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PKEFACE.

This Treatise is in part a republication of those portions of

mj work on Mechanical Philosophy which treat of Attractions,

Laplace’s Functions, and the Figure of the Earth.

The first edition, issued last year, consisted of a small

number of copies. In the present issue the last Chapter has

been rearranged and in part rewritten: other improvements

have been made.

The disappearance of the Mechanical Philosophy has re-

moved from the student—at any rate for the present, as no

other work has yet appeared in English to supply the

want—one subject of great importance and high interest,

which that work first introduced into the University
;

I

mean Laplace’s Coefficients and Functions and the calcula-

tion of the Figure of the Earth by means of his remarkable

analysis. The late Professor O’Brien subsequently published

a Tract on the same subject; but it was incomplete. A
Fourth Edition of Mr Airy’s Tracts has been recently

published, and in these is a treatise on the Figure of the

Earth. But he adheres by choice (as stated in his Preface)

to the “ geometrical and quasi-geometrical methods.” There

is still room, therefore, for the present Treatise; as no

student of the Higher Branches of Physical Astronomy

should be ignorant of Laplace’s Analysis and its results

—

“ a calculus,” to use Mr Airy’s language, “ the most singular
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IV PREFACE.

in its nature, and the most powerful in its application that

has ever appeared*.”

There are problems in the Figure of the Earth which the

geometric and quasi-geometric methods cannot touch, and of

which the student must remain ignorant, if he is ignorant

of the method of potentials.

It has been my endeavour to put the well-known difficulty

in Laplace’s analysis, arising from the use of a discontinuous

function, in the clearest light, that the student may understand

both what it is and how it is overcome. I have made use of

Professor Stokes’s valuable Paper in the Cambridge Philo-

sophical Transactions of 1849 on the ‘‘Variation of Gravity

at the surface of the Earth.” I have also introduced some

Propositions on the Geodetic Method of determining the

Figure of the Earth, suggested by an acquaintance with

the circumstances of the Great Trigonometrical Survey of

India, and by the volume of the Ordnance Survey of Great

Britain and Ireland recently published.

Calcutta, i86i.

J. H. P.

* See Article on Figure of the Earth, in the Eneyclopcedia Metropolitana,

p. 19*.
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ATTKACTIONS AND LAPLACE’S
FUNCTIONS.

1. The Law of Universal Gravitation teaches us, that

every particle of matter in the universe attracts every other

particle of matter with a force varying directly as the mass of

the attracting particle and inversely as the square ofthe distance

between the attracted and the attracting particles. Taking
this law as our basis of calculation, we shall investigate the

amount of attraction exerted by spherical, spheroidal, and
irregular nearly-spherical masses upon a particle, and apply

our results in the second part of this Treatise to discover the

Fi^re of the Earth. We shall also show how the attraction

of irregular masses lying at the surface of the Earth may be
estimated, in order afterwards to ascertain whether the irregu-

larities of mountain-land and the ocean can have any effect on
the calculation of this figure.

CHAPTEE I.

ON THE ATTRACTION OF SPHERICAL AND SPHEROIDAL
BODIES.

Prop. To find the resultant attraction of an assemblage of
particles constituting a homogeneous spherical shell ofvery small

thickness upon a particle outside the shell: the law of attraction

of the particles being that of the inverse square.

2. Let 0 be the centre

of the shell, P any particle

of it, OP= r, dr the thick-

ness, C the attracted particle,

i POC= d] mPMn a plane

perpendicular to 00, ^ the

angle which the planePOC
m^es with the plane of the

paper, PC= y.

p. A. * 1
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2 ATTRACTIONS.

The attraction of the whole shell evidently acts in CO.

Let OP revolve about 0 through a small angle dd in the
plane MOP\ then rdB is the space described by P. Again,
let 0PM revolve about OC through a small angle d<f>, then
r sin 6 d(f> is the ^ace described by P. And the thickness of
the shell is dr. Hence the volume of the elementary portion

of the shell thus formed at P equals rd6 . r sin 6d<f> . dr ulti-

mately, since its sides are ultimately at right angles to each
other.

Then, if the unit of attraction be so chosen, that it equals

the attraction of the unit of mass at the unit of distance,

the attraction of the elementary mass at P on C in the
direction CP

_ pr* sin Qdrddd^
^ ^ density of the shell

;

attraction of Pon C in
cQ^gl«ing^.».c-rcos»

it y

We shall eliminate B from this equation by means of

y = c* + r* — 2cr cos 0,

. n^B y n y*+ c*— r*

dyer 2c

attraction ofP on O' in CO = f 1 +— dyd^.

To obtain the attraction of all the particles of the shell we
integrate this with respect to

<f>
and y, the limits of

<f>
being

0 and 27T, those of y being c — r and c + r

;

.-. attraction of shell on (7 = j +
^

trpfrdr ( c*— r*'\ , rrprdr „ .

_ AirpfPdr _ mass of shell
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SPHERICAL SHELL ON INTERNAL POINT. 3

This result shows that the shell attracts the particle at C
in the same manner as if the mass of the shell were condensed

into its centre.

3.

It follows also that a sphere, which is either homo-
geneous or consists of concentric spherical shells of uniform
density, will attract the particle C m the same manner as if

the whole mass were collected at its centre.

Prop. To find the attraction of a homogeneous spherical

shell ofsmall thickness on a particle situated within it.

4.

We must proceed as in the last Proposition; but tlie

limits ofy are in this case r — c and r + c
;
hence.

attraction of shell =

2c) =0;

therefore the particle within the shell is equally attracted in

every direction.

5. This result may easily be arrived at geometrically in

the following manner. Through the attracted point suppose

an elementary double cone to be drawn, cutting the shell in

two places. The inclinations of the elementary portions of

the shell, thus cut out, to the axis of the cone will be the

same, the thickness the same, but the other two dimensions

of the elements will each vary as the distance from the at-

tracted point; and therefore the masses of the two opposite

elements of the shell will vary directly as the square of the

distance from that point, and consequently their attractions

will be exactly equal, and being in opposite directions will

not affect the point. The whole shell may be thus divided

into pairs of equal attracting elements and in opposite direc-

tions, and therefore the whole shell has no effect in drawing

the point in any one direction more than in another.

6. The results of these two Propositions are so simple

and beautiful, that it is interesting to enquire whether these

1—2
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4 ATTRACTIONS.

properties belong exclusively or not to the law of the inverse

square of the distance. To determine this is the object of the
four following Propositions.

Prop. To find the attraction of a homogeneous spherical

shell on a particle without it; the law of attraction being repre-

sented hy ^{y),y being the distance.

7. The calculation is exactly analogous to that given
above : we have only to alter the law of attraction. Then
attraction on (7 in CO

_ irprdr
+ c* — r*) ^ ip) dy (integrated by parts)

= W + f-r’)S.t,{:y)dy~2S\i,S<t,ljl)dy)dyi

_ ^^ (j,)
_ 2^ (y) + const.} suppose,

c

^^trprdr ^ <f>^
(c+r) - ^ ^ (c+r) (c-r) + (c-r)

j-

n .7
^

-27rprdr
yfr {c + r) — (c — r)]

this latter form being introduced merely as an analytical

artifice to simplify the expression..

Prop. To find the attraction of the shell on an internal

particle, with the same law.

8. The calculation is the same as in the last Article,

except that the limits of y are r — c and r + c

:

(/jp Q J
.•. attraction = 2'jrprdr j~^ +c) — ^

(r + c)

r — c

= 2,rpr*i|
d {r+ c) — {r — c)

]
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SHELL COLLECTED IN ITS CENTRE. 5

Prop. To find what laws of attraction allow us to suppose

a spherical shell condensed into its centre when attracting an
external point.

9. Let (r) be the law of force
;
then if c be the distance

of the centre of the shell from the attracted point and r the

radius of the shell, and

^{r)= ^[rj^{r)dr]dr,

then the attraction of the shell

But if the shell be condensed into its centre, the attraction

= 47rpr* dr
(f>

(c)

;

d fd-y^c r d^^jrc r® 1 \

dc\dc c^ dc^ c 1.2.3^'*’/

= 2>-'^(c) + 2*(
d fd^tpe 1

dd c 1 . 2 .

3

+ ...);

^ ”) ~ whatever r be

;

.
^ /I _ A ^!±£'\ _ 0” dc\c dd ' dc\c ddj~^’'“

But = cf(p(c) dc, (c) dc + c<f> (c).

^ = 2<Ac + c-^-

therefore by the first of the above equations of condition

2 , d(i>c ^ „ j
-^ = const. = 3A,
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6 ATTRACTIONS.

and multiplying by c* and integrating

c'<f>{c)=Ac^-rB,

A and B being independent of c,

<}>{c)=Ac + ^.

This is the most general solution of the first of the equations

of condition for -^Jr (c), and it satisfies all the rest. Hence the

only laws of attraction which have the property in question

are those of the direct distance, the inverse square, and a law
compounded of these.

Prop. To findfor what laws the shell attracts an internal

point equally in every direction.

10. Wlien this is the case

dc {

(r + c) — — c)

c

dyirr d^yfrr c*

dr 1.2.3"^’*'

whatever c is, A being a constant independent of c

;

dyfrr -A d^yjrr

~d?~
= 0

,
...

These conditions are all satisfied if the first is : this gives

rf(f)(r)dr = -A, <f>{r)=^,

and therefore the inverse square is the only law which po.s-

sesses this property.

11. The form of the Earth and of the other bodies of the

Solar System differing from the spherical, and more resem-

bling the spheroidal, it is desirable to find the attraction of a

spheroid upon an external and an internal point.

Prop. To find the attraction ofa homogeneous oblate ^he~
roid wmn a particle within its mass; the law of attraction being

that of the inverse square of the distance.
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HOMOGENEOUS SPHEROID ON INTERNAL POINT. 7

12. Let a, c be the semi-axes; the minor axis 2c coin-

ciding with the axis of z : then the equation to the spheroid

from the centre is

I gy_-i
a c

Let fgh be the co-ordinates to the attracted particle, which
we shall take as the origin of polar co-ordinates,

r — radius vector of any particle of the attracting mass,

d = angle which r makes with a line parallel to z,

<f>
= angle which the plane in which 0 is measured makes

with the plane xz

;

x=f+ r sind cos^, y = ff + r sinO z — h + r'cos6,

and the equation to the spheroid becomes

(y+rsindco3<^)*-|- (y + rsin 0sin^)*
_

(A + »* cos d)*
,

"1 ' l2
— ^ >

or r
fsm^0 coa^6\ „ /^sin 0 cos ^ -t-y sin 0 sin ^ Acos^

, r+y h\
a* c“

’

sin® 0 cos® 0 „
put -^+—, =R,

ct c

/sin d cos ^ ^ sin 0 sin ^ A cos 0 ^
a c®

and =

then A'®r* + 2ir^r-Hi?’® = ir,

and the values of r are

and =
A A
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8 ATTRACTIONS.

The volume of the attracting element smOdrdOd^ as

in Art. 2 : let p be the density of the spheroid. Then the

attraction of this element on the attracted particle is

p sin 6drd6d(f)

:

and the resolved parts of this parallel to the axes of xi/z are

p sin* 6 cos <j>drd6d<f>, p sin* 6 sin <j>drd6d<f>,

p sin 6 cos 6drd6d<f).

Let A, B, Che the attractions of the whole spheroid in the

directions of the axes, estimated positive towards the centre

of the spheroid. Then these e^ual the integrals of the attrac-

tions of the element
;
the limits of r being — r and r", of 6

being'0 and tt, of <p being 0 and tt. Hence

A = — [ [ I p sin* 0 cos <f>drdd d<f>,

J -rJ 0 0

B = —[ f f p sin </) dr d0d<f),
J -rJ 0 0

C = —f
I

f p sin 0 cos 0dr d0d(f>,
J -rV qJ a

A = — pf f (r" + r') Bing’d cos </>d0d<f>
J qJ 0

Jp'
^sln* 0 cos <f>d0d<l>.

Now it is easily seen that if E (sin a, cos* a) be a rational

function of sin a and cos* a, then

I
E (sin a, cos* a) cos a <?« = 0.

0

Therefore,by substituting for F and K we have

sin* 0 cos*
<f)
d0d(p

c* sin* 0 + d‘ cos* 0

Digitized by Google



HOMOGENEOUS SPHEROID ON INTERNAL POINT. 9

sin® QdB

c^sin^^ + a^cos^^

(1— cos®^) sin 6dd ^
c®+ (a® — c®) CO8®0

„ ^ e 1-e®= lirfp . 8— tan -r=- j—

^

(
c® Vl - e® e® j

(VI -e» . 1-e®)= 27T//J |—^ Sin ‘ e - -^1

.

In the same manner we should find that

P o (Vl — e® . 1 — e®|B= 2iTgp -8— sm ‘ c - .

Also C=2pjj ^ sin 6 eos 6dOd<f>

o T. * sin 6 cos^ 6d6d6

0 •' 0 e

sin 0
c® sin 0-

a*_ f “
c® + (a® - c®) cos^,

= 4.pA-A{l-Ti^tan-®S
o®-c*| c j

. , fi VT^ .= iirph ^ sin

_

* If the spheroid bo prolate, c is > a and the denominator of this must be
written o’— (c* — o’) cos* 0, and the integral would involve logarithms instead
of circular arcs.
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10 ATTRACTIONS.

13. We gather from these expressions, that the attraction

is independent of the magnitude of the spheroid, and depends
solely upon its cllipticity. Hence the attraction of the sphe-
roid similar to the given one, and passing through the attracted

particle, is the same as that of any other similar concentric
spheroid comprising the attracted particle in its mass. Hence
a spheroidal shell, the surfaces of which are similar and con-
centric, attracts a point within it equally in all directions*

This property can be proved geometrically exactly as in

Art. 5.

14. If we put the ellipticity of the spheroid = e, and sup-
pose e so small that we may neglect its square, we have

If we had taken an ellipsoid instead of a spheroid, the ex-

pressions would not have been capable of integration.

15. If we had attempted to find the attraction on an exter-

nal particle according to the process of the last Article, we
should have fallen upon expressions which no known methods
have yet integrated : and therefore we are imable by any di-

rect means to obtain the attraction of a spheroid on an external

particle. Mr Ivory has, however, devised an indirect method
of obtaining it, which we shall now proceed to develop. He
has discovered a theorem by which the attraction of an ellip-

soid upon an external particle is shown to be prcmortional to

that of another ellipsoid, dependent on the first for form and
dimensions, upon a particle internal to it, and therefore (in the

case of a spheroid, or ellipsoid of revolution) determinable by
the last Proposition.

Prop. To enunciate and prove Ivory's Theorem.

16. Let ^ +^ + 5=1, and^+^+^ = l,
a 0 c a: ^ 7
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SPHEROID ON EXTERNAL POINT. IVORY’S THEOREM. 11

be the equations to the surfaces of two ellipsoids having the

same centre and foci : then

a*— 6* = o* — /S’, o’ — (f = a’ — 7*
(1).

Let fgJi, f’g'h' be the co-ordinates to two particles so situ-

ated on the surfaces of these ellipsoids that

9

h h _ c
(
2).

Also since (fgh) {f'g'Jt) are points in the surfaces of the first

and second ellipsoids respectively, we have

Then the attraction of the first ellipsoid parallel to the axis of
X on the particle at the ‘mint {fgh') on the surface ofthe second,

is to the attraction of the second, ellipsoid on the particle at the

point [fgh) on the surface of the first in the same direction, as

ah : ap, the law of attraction being any function of the dis-

tance: and similarly with respect to the axes ofy and z. This
is Ivory’s Theorem.

We shall, for convenience, represent the law of attraction

by the function r^(r*), r being the distance.

The attraction of the first ellipsoid on the particle {fgh')
parallel to the axis of z

= pflKh' -z)<f>{f'-xy+ {g' -yf + {h! - zf] dxdydz,

the limits ofz are—

c

the limits of y are — h

* o’ i^)’ o’

and the limits of a: are — a and a

=p!m{f-xy+{9-yy+{h'+zr\

-^[f'-xy+ {g' - yy -H {h' - «)’}] dxdy
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12 ATTBACTIONS,

between the specified limits

:

it must be remembered that in this expression

2 = c )

but we do not substitute this value merely that the function

may be preserved under as simple a form as possible. Now
put x=ar, y = hs, z = ct, then the attraction

= poi>H [t (
(/'- + {g -hsY-^ {h’ - cty}

— {(/' — ary + [g' — bs)* + {h' + c<)*}] drds,

the limits of s being — \/(l — r*) and V(1 — those of r

being — 1 and 1 ; also t
—
V(1 — r* — s*).

Now (/' — ary + [g' — 5s)* + (A' + ct)*

=/'* + ^'* + A'* — 2 {far + g'hs + h'ct) + a*r* + 6*s* + c*t*,

substituting for A'* by (3) and for <*,

=/" ~ J)
- 2 {far -\-gh8 ± h'ct)

+ (a*-c*)r*+(5*-c*)s* + c*,

eliminating fg'h' by (2) and making use of (1),

= (a* - c*) +^ (5* - c*) + c* - 2 {far +g^s ± hyt)

+ (a* — 7*) r* + O* — 7*) s*+ 7*

=/* +^* + /t* - 2 {far +g^s i hyt) + a*r* + ^*s* + t*<*, by (3),

= (/- ary +{g- fisy + (A ± yt).

Hence the attraction of the First Ellipsoid on {fg'h')
parallel to z,

= pahjj[^]r{{f- ary + {g- fisy + (A + yt)*}

- V" {(/- “»)* +{g- - tO’]]
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SPHEROID ON EXTERNAL POINT. IVORT’S THEOREM. 13

= ^ X attraction of Second Ellipsoid on {fgh) in the same

direction.

The same may he proved for the attractions parallel to the

other axes; and consequently the Theorem, as emmciated,
is true.

We may observe that one of these ellipsoids must neces-

sarily be wholly within the other. For if not, the points in

which they cut each other lie in the line of which the equa-

tions are

z
and

X

Suppose a less than a; the points of intersection must
satisty the equation

ay

and this by (1) becomes

an equation which can be satisfied only by x=0, y = 0,

2 = 0. But these do not satisfy the equations above; and
therefore the surfaces do not intersect in any point.

To find the attraction of any ellipsoid of which the semi-

axes are a, h, c upon an external point {f'g'h') by the help of

this Theorem, we must first calculate the attraction of an ellip-

soid of which the semi-axes are determined by equations

(1) and the second of (3), on an internal ;)oint [fgh), f, g and
h being given by equations (2). And then the attractions

required will be those multiplied by

he ac ah

By’ ’ a/3

’

respectively.
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CHAPTEE II.

Laplace’s coefficients and functions.
17.

In the present Chapter we shall develop the properties

of those remarkahle quantities which have received the name
of their great discoverer, under the designation of Laplace’s
Coefficients and Functions. To do this it will be neces-

sary to anticipate the subject of the following Chapter, and
to bring in here a Proposition which should properly stand at

the head of that division of this treatise.

Prop. To obtainformulcefor the calculation ofthe attraction

of a heterogeneous mass upon any particle.

18.

Let p be the density of the body at the point (xyz
)

;

fgh the co-ordinates of the attracted particle
;
and, as before,

suppose that A, B, C are the attractions parallel to the

axes ic, y, z. Then

A = Pif- x) dxdydz

{(/-^r+07-yr+(A-^)?’

B =

C =

III

III

p{g —y) dxdydz

{{J-xY+ig-yTHh-zn'

p {h — z) dxdydz

{(/-=^r+(^-yr+(A-^)?’

the limits being determined by the equation to the surface of

the body.

Let r=///
pdxdydz

B= -
dg’

C= -

dV
dh •

19.

It follows, then, that the calculation of the attractions

A, B, C depends upon that of V. This function cannot be
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FOEMULiE FOE HETEEOQENEOUS MASS. POTENTIAL. 15

calculated except when expanded into a series. It is a function

of great importance in Physics : and, for the sake of a name,
has been denominated the Potential of the attracting mass, as

upon its value the amount of the attractive force of the body
depends.

20. As the axes and origin of co-ordinates in the previous

Article are altogether arbitrary, it follows that if r be the

distance of the attracted point from any fixed point in the

attracting body, then the attraction in the line of r, towards

the origin oi r, =—^ .

Peop. ^ , d*V PV
Po prove that

c?*F
or-47rp,ao-

cording as the attracted particle is not or is part of the mass
itself; p being the density of the attracted particle in the

latUr case.

21. By differentiating F, we have

dV_ rrr — p {f— x) dxdy dz

W~JIJ {(/-»)* +(^-3')’'+ (A -«)*}•’

d*V_ rffp{2 dxdydz

df^-JJJ {{f-xy+{g-yr+{h-zY\i

In the same manner we shall have

rf*F_ [ff p }2 {g - y)* - if- x)' - (A - g)^} dxdydz

df~JJI {if-xr+ig-yy + (h-zY}l

d’V_ ff[p{2(h- zf - if- x)* - {g - yf] dxdydz
.

dh*-]}] {{f-xy+{g-yy+{h-zY\i

d'V d*V d'V fff Ox dxdydz
+ dh* -JJJ {(f-xy+(g-yy + (h-zyji

*

"When the attracted particle is not a portion of the attract-

ing mass itself, then xyz will never equal respectively.
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16 ATTRACTIONS.

and consequently the expression under the signs of integration

vanishes for every particle of the mass

;

d*V
, ^

Tills equation was first given by Laplace: and Poisson was
the first who showed that it is not true when the attracted

particle is part of the attracting mass. In that case the deno-
minator of the fraction under the signs of integration vanishes,

and the fraction becomes
^ ,

when x y — g, z = h.

d'V d'V d'V

.

To determine the value of in that case,

suppose a sphere described in the body, so that it shall include

the attracted mrticle
;
and let F = C7+ TJ', U referring to the

™here, and U' to the excess of the body over the sphere.

Then, by what is already proved,

d*U’ (TU’

df ^ dg^ dh^

c?*F, <TF, d^V_d'‘U
^

d'U
,

d^U
df^d^^ d^h ~ df^ d^^ dK •

The centre of the sphere may be chosen as near the

attracted particle as we please
;
and therefore the radius of

the sphere may be taken so small that its density may be
considered uniform and equal to that at the point {fgA), which
we shall call p.

Let f'g’A' be the co-ordinates to the centre of the sphere

;

then the attractions of the sphere on the attracted point

parallel to the axes are, by Art. 3,

^(/-/). ^-^-(9-9),

or
dU
dr dg ’

dU
'dh'

by Art. 20.
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TRANSFORMATION TO POLAR CO-ORDINATES. 17

d'U d^U d'U
, ,

df^d^"^ dh'
~

’

d}V tPV (PV
, ,

" df dg* dh'
~

when the attracted particle is within the attracting mass.

22. It may be shown by precisely the same process as in

the previous Article, that

d'B <PB

df ^ d^^ dh*

where B = [(/- »)*+ (^ - y)“ + (A - z)T*.

the reciprocal of the distance of any point of the body from
the attracted particle.

Prop. To transform the partied differential equation in B
into polar co-ordinates.

23. Let rd<a be the co-ordinates of [fgh], and rffa of

{xyz), the angles 6 and ff being measured from the axis of z

;

o> and 0)' being the angles which the planes on which 6 and
6' are measured make with the plane zx. Then

y=r sin 0 COSO), y= r sin ^ sin o>, A = rcos^,

a; = r' sin & cos o)', g' = r sin ff sin o)', K = r' cos O'.

These are the same as

r'=f*+g' + h\ coaO =
,
tan a> =|. (l)

;

dB _ dB dr dB dO dB dm
'

' df dr df^dO df^dm df'

d*B _ d dB dr d dB dO d dB dm

lff~Tf'di^ df'^Tflfo If

dB d*r dB d'O dB d*m

^'^~dd
p. A. 2
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18 ATTRACTIONS.

_ d'R dr* d*B dd* d'R da?
~ dr* df^ dd* df^ da? df

d'R dr d6 d*R dr dm d*R dd dm
^ drdO df df^ drdm df df^ dOdm df df

d_R^ d^^
^ dr df^ de df '^dm df

'

Tlie expressions for and are of the same form.

These three must be added together and equated to zero.

When this is effected the formulae (1) make

the coefficient of ~^

the coefficient of

the coefficient of

the coefficient of

d*R de? de? dd* 1

dd*~ df^dg* '^dh*^r*

d*R_ dm* dm* dm* 1

dm* ~r=‘sin*0’

d*R dr dO . dr dd dr dd

drdd dfdf^ dg dg^^ dhdh~^*

d?R dr dm dr dm ^ dr dm ^

drdm dfW dg dg

d?R dO dm „ dd dm „ dd dm
dddm ~ W'W dgdg ^^dhijr^*

dR_ d*r d*r d*r 2

dr df^dg* ’^d/T*~r’

dR d*e d*d d*d .cos d

dd
~
df^df + II

sin d ’

dR_ d*m d*m

dm df ^ dg* (/A*
~ ^
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EXPANSION OP R. 19

Hence the equation in R becomes

d^R 2 dR 1 d^R cos 9 dR 1 d^R

dr^ ^ r dr ^ d6P ^ r* sin 6 dd sin"^ c?ea*

~ ^ ’

d^.rR d^R coa 9dR 1 <PR

Put cos 9 = fi, then

.rR d (. g. 1 dR
dr^ dfi

^ ^
rf/ij l—/i*

~

Prop. To explain the, method ofexpanding R in a series.

24. The expression for R becomes, when the polar co-ordi-

nates are substituted,

[r* + r**— 2rr' [fifi + Vl — Vl — /n.** cos (o) — <»')}]"*,

and this may be expanded into either of the series

-PoA+^x^+-
0 r 1 r

orP.^ + ^x5i+.

"b "b • • •

.( 1 ),

• • • • "b -P|
^4+1 + " • •

where P^, Pj,...P,... are all determinate rational and entire

functions of

vr^ /i* cos 0), and Vl — /** sin w

;

and the same functions of /i',

Vl — /It"* cos ft)', and Vl — /t'* sin to .

The general coefficient P^ is of i dimensions in /j.,

Vl — cos ft), and Vl — sin to.

The greatest value of P, (disregarding its sign) is unity. For
if we put

fig! + Vl — /i* Vl — /Li'* cos (ft) — to’) — cos ^ ~ I
"b >

2—2
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20 ATTRACTIONS.

then P^= coefficient of c* in

(1 + c* — 2c cos or (1 — cz)~^
^
1 —

= coefficient of c‘ in

. 1 c 1.3c*
•)(*+

2 i + 274? +

= 2.4cosf0 + 2J5cos(t — 2)^ + ...

A, 5... being all positive and finite. The greatest value of

this is, when ^ = 0. Hence P, is greatest when ^ = 0.

But then P,= coefficient of c' in (1 + c® — 2c)”* or (1 — c)”‘

= coefficient of c' in 1 + c + c* + ... + c*+ ...

= 1 .

Hence 1 is the greatest value of P<. It follows that the

first or second of series (1) will be convergent according as r

is less than or greater than r.

To obtain equations for calculating the coefficients P^, Pj,

...Pj... substitute either of the series (1) in the differential

equation in R in the last article, and equate the coefficients of

the several powers of r to zero. The general term gives the

following equation

:

_J_PP,
(fa,®

+ i {i+ 1) P, = 0,

by integrating which P^ should be determined*. The series

for R would uien be known.

25. The fnnctions Pj, Pj...P,... possess some remarkable
properties which were discovered by Laplace. They are there-

fore called, after him, Laplace's Coej^ients, of the orders 0,

1 , . . . i . .

.

It will be observed that these quantities are definite

* For the direct integration of this equation, see two Papers in the Philo-

tophieal Ti-antctdicns tor iS4t and T857,by MrHargreave and Professor Donkin
respectively.
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Laplace’s coefficients and equation. 21

and have no arbitrary constants in them. Laplace’s Co-
efficients are therefore certain definite expressions involving

only numerical q^ntities with fi and a>, /*' and <a'. Any other

expressions which may satisfy the partial differential equation

in Ptj which is called Laplace’s Equation, may be designated

Laplace's Functions to distinguish them firom the “ Coeffi-

cients,” The fundamental properties of these Coefficients and
Functions we shall now proceed to demonstrate.

Prop. To prom that if
Q^^

and B, be two Laplace's Co-

efficients or Functions^ then I I Q^Ridflda) = 0, when % and

i' are different integers.

26. By Laplace’s Equation in the last Article

1 d^Q,

1 - p* dw*
'

a Q,Bf-dpdta
)

i {i+ 1) jJo dp) dw^ J

By a double integration by parts

/I {(' -'*) (>-/*’) «.

••• Li {(*
- '*)fj ^'^'‘-Li f

I
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22 ATTEACTIONS.

since when w = 0 and 27t, each of the functions Q^, i?,-, .

has the same values, because they are functions of /*,

fl cos (k> and /u. sin o).

Hence, f f Q^R^d^ldw
J a

_ i" (t'+l)

f (t + 1)

by Laplace’s Equation.

ri rftr

I I Q,Bfd/jbdo},
-1 *' 0

Hence, I I QtR,-dfid(i) = 0, when f and f' are unequal.
-I 0

When they are the same the equation becomes an identical

one, and therefore gives no result.

This property is true also when i= 0, as may easily be
shown by going through the process of the last rroposition,

Qi being or a constant.

Prop. To prove that a function of fi, — costo, and

Vl — /i* stn 0), as Fiji, Q}), can he expanded in a series of
Laplaces Functions; provided that F\p, ta) do not hecome in-

finite between the limits — 1 and \ of fi, and 0 and 2ir of to.

27. This very important Proposition will occupy the

present and five following Articles.

Let p(i + Vl — /i* Vl — /i'* cos {(0 — 0}') =p

;

then by Art. 24,

(1 + d -2cp)‘* = 1 + P,c +P/ + + P,c‘ +

c being any quantity not greater than unity.

Differentiate with respect to c,

p — c

(1 + c* — 2cp)*
= P, + 2P“c + + iP^‘-‘ +
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EXPANSION IN TERMS OF LAPLACE’S FUNCTIONS. 23

Multiply this by 2c and add it to the former equation.

••• = + + (2t + l)P,c, + ...

Now c being quite arbitrary we may put it= 1. Then the
fraction on the left-hand side of this equation vanishes, except
when p = l; in which case the fraction on the left hand be-
comes apparently indeterminate : but it is in reality infinite.

For when^ = 1, ^
= infinity, when c = 1.

Whenj3 = l, then

cos («'- a>) =

and that this may not be greater than unity we must take
/4* -f /u.'* not greater than 2/ip', or (/i~ /i')* “ot greater than
zero. Hence fi = fi, and therefore cos (w' — to) = 1, and a = a.

These, then, are the values of /t' and a>' which make^ = 1.

Hence, the series 1 + 3P, + 5P^ + + (2f+ 1) /< -|-

vanishes for all values of /t and ®, fi and a>, except when
fi = fjt>' and 0) = fi)', in which case the sum of its terms suddenly
changes from zero to infinity.

28. Upon this series depends the important property of
Laplace’s Functions which we are now demonstrating, and
which gives them so great a value in the higher branches of
analysis. In consequence of the discontinuity above pointed

out, and also because the series becomes infinite in one stage

of the variations of its variables, it has been considered by
some to be unsatisfactory to deduce any properties from it.

But the latter objection is entirely removed by the fact, that

we do not use the series in its present form, but after being
multiplied by small infinitesimal quantities which render the

aggregate of its terms finite, preventing their accumulating

to an infinite amount. With regard to the objection of dis-

continuity, there appears to be no sufficient ground for it.

There is no question, that the property deduced (as enunciated
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24 ATTRACTIONS.

in our Proposition) is true, at any rate for rational functions

oi fi, Vl — cos to, and Vl — /i* sin to, and is also most impor-
tant. This objection, however, deserts to be examined with,

care, which we now propose to do in the course of our de-
monstration.

29. Multiply both sides of the last equation by the double
clement tf/t'Jto', and integrate,

The property of Laplace’s Functions proved in Art. 26,

shows that every term of the series on the right, except the

first, vanishes of itself, independently of the other terms

;

and therefore (as was before intimated) the terms cannot ac-

cumulate. The first term is 4-77 : and therefore the integral

of the fraction on the left, that is

J-Jo (l+c*-2cp)*’
= 4tt.

It is remarkable that this result is altogether independent
of c.

30. The truth of this may be sliown also by integrating

the fraction on the left. This cannot readily be done with
the co-ordinates as at present chosen. But it may be done by
a simple ti-ansformation, and a change in the way of taking
the elements.

Suppose a sphere of radius unity described about C the
origin of co-ordinates. Let 0’ and
0)' be the angular co-ordinates to

a point P, 0' (or cos"‘/u.') measured
from a fixed pointA along a gi eat

circle of the sphere, and o»' the

angle which this great circle makes
with another and fixed great circle

through A. Then d0'
. do)' sin 0',

or — dfjJdfd, is an infinitesimal

element ofthe surface ofthe sphere

at P. Take I) a point within the

sphere, and let (jD = c, and sup-
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EXPANSION IN TERMS OF LAPLACe’s FUNCTIONS. 25

})ose CD meets the sphere in Q when produced forwards, and
in q when produced backwards. Let and a> be the co-or-

dinates of Q. Then^ (see its value, Art. 27) is the cosine of

the angle which CP and CQ make with each other : and the

distance of P from D = V 1 + c* — 2ra. Let be the angle
which the plane CPQ makes with VAQ, that is, the angle
AQP. By changing the origin of the angles from A to

and dividing the surface of the sphere into new elements,

beginning from Q as the origin, the element at P, with these

new co-ordinates cos”'y> and will be — dpd‘>^.

By reverting to the meaning of integration we see that

the integral under consideration = (1 — c*) x limit of sum of
all the elements of the surface of the sphere divided respec-

tively by the cubes of their distances from D.

But this, by the change of co-ordinates, also

= 27T
(:

= + const.

,

yl+c—2ep /

1-c’ f—

)

\l-c 1 + cJ

= 47t, whatever value c has. This coincides with the former

result.

31. This integration helps us to see by what process c

disappears from the result
;
and it will assist us in the latter

part of the present demonstration.

The quantity 1 —p is the versed-sine of the arc QP, and is

measured along the line QCq. Let this line be divided into

n parts each equal to h, so that n.h = the diameter =2, n being
very large and h very small. Draw perpendiculars to the

diameter through these divisions cutting the circle QPq in a
series of points

;
and call the distances of these points from D,

beginning from Q,

1 — c, s', s", s'" s*”"”, 1 + c.

Suppose P is at the division
;
then

1 —p = x.h,

and d (1 —p) or — dp = (x + 1) h — xh = h.
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26 ATTRACTIONS.

Then by mere expansion, omitting the squares and higher
powers of h as they vanish in the limit with reference to the
first power, we see the truth of the following

;

*—dp d{\—p)

(1 + d- 2cpY
~

{(1 - c)* + 2c (1 -^)}«

C 1V(1 — c)* + 2cxA V(1 -c)* + 2c (x+ l)Aj

cU'*’ «•***/

By giving x its successive values from 0 to n — 1 ,
and adding

together all the resulting values of this expression and taking
the limit, we have the integral with respect to p. It matters
not in which order we effect the integration. Hence the whole
integral

f-f {i-ejdHp
K J-iC* +c*-2(y)*

(s' s")'^”‘'^(s<"-‘'

n being made infinitely great,

Here it will be seen that the terms within the last brackets

mutually destroy each other whatever be the value of c. It

may also be observed that were this not the case, that whole
part of the expression would vanish for the particular value

c = 1 (which is the only case we shall have to use), whatever
the value of the sum of the terms following the multiplier

1 — c*, so long as that sum is not infinite.
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EXPANSION IN TERMS OF LAPLACE’S FUNCTIONS. 27

32. Suppose now F{jj!, a>') is any function of and a>,

then

ff-1 *' 0

. _ F(/i\ o') dfido)

(1 + c* — 2cp)*

— f f { 1 + 3 + ... + (2t + l) Ff + ...} F (ji
,
ca) dfL d(a .

J -I J 9

The reasoning above enables us now to prove that the in-

tegral on the left-hand side = AirF{fM, ca), which directly leads

to the theorem we are wishing to demonstrate.

The function F{fi, <o') at the point Q is F{fi, a), call it F:
let F', F"... F^”* be its values at the points of junction of the

successive elements along the great circle QFq. Then by

multiplying the successive values of - —j^,) by F, F',

F"... and* adding them together, we have

J -I*/ 0

d 0 d -I

or

F(ji, ft)') dfida>’

(1 + c* — 2cp)‘
’

F (fi, ft)') d^jrdp

(1 -H c* — 2cp)*
’

= rdf\^F- lz£zr<"-‘'+—{(?^- ?)

+

(Z- ?r)+...l
L c c c (Vs s / \s s /

fiw

I
df

J fl 1_
C C c

(

n being made infinitely great.

• X c X “ c • • • •

The fractions — diminish successively in
8 8

value, being the ratios of QD to the successive values of DP.
When c = 1 each of them vanishes

;
and in the limit none of

the factors F' — F, F" — F', ... become infinite. Hence the

integral = I df . 2F, when c = 1 ,
= iirF (ji, <o) because F{fi, 6>)

0
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is a fonctlon of fi and a> only, and is altogether independent

of

47tF(/i,0))= [ ( {l+3Pj+...+(2t+l)P,+...j-F(/i',tBV/*'‘^'»
J _1 J 0

••• FM=f f-1 *' 0

I
dfi'da'.

[
47T

+

47T

iv
Fi +

The general term of this, viz.

fJ"^-^F{f.', ro’)P,dfi'd^\

which we will call P,, is a function of and e»
;
and evidently

satisfies Laplace’s Equation in
fj.

and o>, because P does so.

Hence, this is a Laplace’s Function, of the t“* order: and the

result is, what we were to demonstrate, that any function of

/t and 0) may be expanded in a series of Laplace’s Functions

;

or,

•^(/^) ®) = -P + -P + -P + + P +

.33. Those who are at all acquainted with the controversy

which followed the first discovery of these remarkable functions

by Laplace, will understand why we have entered so fully

imon the subject. Laplace’s demonstration in the Mecanique
VSleste was by no means conclusive. This Mr Ivory pointed

out in the Philosophical Transactions for 1812
;
and in the

Volume for 1822 he threw considerable doubt upon the

applicability of the theorem to functions that are not rational

and entire functions of /*, Vl— /x* cos a, Vi — /X* sin ©. Poisson
has written much upon the subject. In the first edition of the

author’s Mechanics Philosophy the last method of Poisson

was followed, as given in his Thiorie Mathlmatique de la

Ghaleur; in which he effects the integration of the firaction

on the left-hand side by the artifice of substituting for it an
integrable, but entirely different fraction in its general form,

but which coincides with it in the particular case for which he
requires it in the result, viz. when c=l. In the Second
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Edition of the Mechanical Philosophy we gave a much shorter

5
roof, based i^on an idea taken from rrofessor O’Brien’s

laihemaiical Tracts. But this also rather concealed the real

difficulty of the case, and passed it over by an artifice. In
the demonstration now given, we have gone to the foundation

of the calculus, the doctrine of limits, and attempted to clear

up all difficulty and ambiguity in the matter.

With regard to the doubt thrown out by Ivory, alluded

to above, it seems to be elear that theoretically every function

can be expanded in a series of Laplace’s Functions : but if it

be not a rational function of the co-ordinates, the number of

terms in the series will be infinite, and if the terms be not con-

vergent, the expansion, or rather arrangement, will be use-

less. But this must be determined in each case. A similar

uncertainty, requiring examination, always attends the use of

infinite series.

Prop. To prove that afunction ofy, and ta can he arranged

in only one series of Laplace's Functions.

34. For if possible let both these be true,

Fiji, a>) = f; + f; + f; + +f +

F{fi, (o) = G,+ G,+ G,+ + G +
••• 0 = (f;- + (f;- g,) + + [f- g,) +

and if these letters be accented when fi and a> are the variables

instead of p and a>, then

0 = {F' - g:) + [f; - Gfi + + {f;- gd +

0 = f f Pi [Fl — G,) dp dtd, by Art. 26.
J -I J 0

But the principle demonstrated in the last Proposition

shows that

a; - Gf,

=^ + 3P, + ...

)

(p; - Gi) dp'd<o\

= I*' Pi (F: - Gl) dp!d<o', by Art. 26,

= 0, by the condition deduced above

;
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therefore F^=0^, and the two series are term by term iden-

tical, and the Proposition is true.

35. It follows from this, that if by any process we can

expand a function in a series of quantities which satisfy

Laplace’s Equation, that is the only series of the kind into

which it can be expanded : and if by any other process we
obtain what is apparently another, the terms of the two series

must be the same, term by term, and we may put them equal

to each other.

36. Before concluding this Chapter, we shall explain how
the numerical coelBcients in PqP. ... P, ... are found : and shall

give a few examples of the truth of the last Proposition but

one (that in Art. 32) by actual integration.

Prop. To explain how to expand P^.

37. By Art. 24 P^ is the coefficient of c* in the expansion

of the function

[1 + c* — 2c [pfj! + Vl — /i* Vl — /i”* cos (ft) — «»')}]”*,

and is therefore a rational and entire function of /i,

Vl — cos ft), and Vl — sin w

;

and is precisely the same function of ji!,

^/l — /i'^cos o)', and V 1 — /*'* sin a>.

The general term of P^, viz. that involving cos n («»— <»'), can
arise solely from the powers n, « + 2, n + 4, ... of cos (<» — a>).

Hence (1—/X*)* will occur as a factor of that term: and the

other part of its coefficient will be a factor of the form

+ . . . + + . . , = p[^ suppose.

Hence

P,=ifo+(l— cos (o> — ft)') +...+(l-/x*)*jE?;,cosn(ft)— ft)')+...

If this be substituted for P, in Laplace’s Equation and the
coefficient of cos n{to — ay') be equated to zero, we obtain a con-
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t

dition from whicli to calcnlate the arbitrary constants we have
introduced. This condition, after reduction and arrangement,

is as follows

:

0= - n
)
(.•+ » + 1

) (1 - ^ |(1
- .

Substituting in this the series which represents, and
equating the coeflScient of the general term (1 — to

zero, and reducing, we arrive at the formula

. {i — n — 2s + 2){t — n — 2s + l)

2s (2f-25 + l)
~ '

By making s successively equal 1, 2, 3 ... we have A^A^,,.

in terms of Let these be substituted, and we have the

coefficient of cos n{to — to' =

(t-n) (t-n-1)
.

2(2f-l) ^ +

call this A^iji). The coefficient A^ is a function of ya', but is

independent of fi : and because is the same function of /a'

that it is of /a, it follows that A^ = where a„ is a nume-
rical quantity : and the coefficient of

cos n (6)- ©') =

To find 0, we must compare the first term of the ascending

expansion of a,/ (/a')/(M) powers of /a with the correspond-

ing term in the coefficient of c* in the actual expansion of

[1 + c*— 2c (/a/a' + Vl — /a* V 1 — /a'* cos (o) — &>')}]”*.

This leads to the following result

:

(
1.3.5... (2a-l) ]» a(a-l)...(a-n + l)

.

I 1.2.3...* J (* H- 1) (* + 2) ... (* + *j)
’

this applies when » = 1, 2, 3..., but evidently not when
n = 0 : a, is foimd by equating coefficients to be

fl .2.3... (2*- 1)1*

I 1.2.3...* )
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We have now the complete value of P, in a series
; it is as

follows

:

1.2. 3. ..I J

2(2t
^

i (t — 1) (t — 2) {i— 3)

2 (2*-l) 4(2i-3) ^

t(t-l) (t-2) (z-3)

.1
, _&C I

^ /o.* Q^ A* -OtC...|

2(2i-l) 4(2t-3) I

+ 2 cos (o) — ca)

X
(»-l)(»-2)

2(2t-l)

(f-l)(f-2)

2(2t-l)

HS i

At +

(t-l)(*-2) (i-3)(t-4)

2(2t-l) 4(2t-3)
^

(^-l)(»-2)(f-3)(f-4)

2(2i-l) 4(2i-3)
^

+2cos2(fl)—oj')

(t+l)(t+2)

X (I-,.*) !/**"

x(iV*){a*""*-

+ &C....1.

(f-2)(f-3)
,

(f-2)(f-3) (t-4)(i-5)

2(2i-l) ^ 2(2t-l) 4(2t-3)
^

(^-2)(^-3) (t-2)(t-3) (f-4)(f-3) _
2(2i-l) ^ 2(21-1) 4(2t-3)

^

I

I

38. The following numerical examples are written down
for convenience of reference :

(1) P, = fifi + Vl — /** — At* cos (o) — to).

(
2

)
P,=| I^At*- 1)

(/*'*-
1) + 1

(l-At*)V(l-/t'*)V'cos (ft)-®')

+ 1
(l-At*)(l-At'*)cos2(®-®')|

.
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(3)

+ 1
(IV)‘(p’-i) {1-p")' (p”-

5)
=08

+ |(*“/**)pCl-/*'V'0O82(l»-6)')+~(l-^*)'(l-^'*)*C083(ctf-*l»')|

&c. = &c.

39. The following are some examples of expanding a
function in a series of Laplace’s Functions, by an application

of the formula

F, =^f j^F(jM', co') P.dfl’dco',

proved in Art. 32.

Ex. 1 . Arrange a + bfj.^ in terms of Laplace’s Functions.

Here F(ji, a>') = a + First put * = 0,

P^ = ^j j
(a + &/*'’) d/i'do)' = ^j

(a + hfi'^) d/i'

=
^ + 1 + const.) =a + ^h.

Again, put f= 1, Pj is found in the last Article.

P^ =^^ f (a+b/i'^) {fi/i'+V1— V1—/i'^cos (a>—(o'}jd/i'd(o'

=^ j
{a+hfi^) [fifi . ft)'— Vl—/a* V1—/a'* sin (<»—&)')

}
(///.',

between the proper limits, <a' = 0 and (d = 27t,

= ^j
(a+b/^'^ fifidfj,'= ^fi(^ «/i'* + J

bfi'*^
,

between the limits fi = —l and /a' = 1, = 0.

P. A. 3
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34 ATTBACTIONS.

Next, put 1 = 2, and substitute fotP, from the last Article.

{j
('*’5) ('*’-

1)

+N co^ 2 (o)—
o)')| dfidoa

Hence the function a +i/x* stands as follows, when arranged

in terms of Laplace’s Functions,

and consists of two Functions, of the order 0 and 2 respectively.

The above is a long process to arrive at this result. It might
have been so arranged at a glance. But the calculation has
been given as an example of the use of the formula, which in

most cases is the only means of obtaining the desired result.

Ex. 2. Arrange 49 +30ya+3/A*+ (40+ 72/i) cos (©-a)

+ 24 (1 - //.*) cos 2 (© - a) in terms of Laplace’s Functions.

The result is 50 + {30/a + 40 Vl — yx* cos (© — a)|

+ {3/a*— 1 + 72/a Vi — /a* cos (© — a) + 24 (1 — /a*) cos 2 (©—a)},

consisting of three functions of the orders 0, 1, 2.

Ex. 3. Let the function be
,

1 + \/2 — 2/a* cos (© + a) + 2
(1 — /a*) cos 2 (© + a).
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The first term is a Laplace’s Fimction of the order 0, and the

second and third terms taken together are one of the second

order.

Ex. 4. Let 1 —(1— ft*) cos* CO be the function. The arrange-

ment is

or, which is the same,

| +
|^-(l-/^*)cos*ft)|.

3—2
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CHAPTER III.

ATTRACTION OF BODIES NEARLY SPHERICAL.

40. As the Earth and other bodies of the Solar System
are nearly spherical, and yet may not be precisely of the

spheroidal form, it is found necessary in questions of Physical
Astronomy to calculate the attraction of bodies nearly sphe-
rical. It is in these calculations that tlie value of the Functions
we have been considering in the last Chapter is seen.

If r'd'm' be the co-ordinates to any element of tlie attracting

mass, p be its density, and cos 6' = p!, then the mass of this

element

= p'drrd&r sin 6'd(d = — p r'^dr dp!dto

,

and the reciprocal of the distance being R, by Art. 18 and 24,

the potential V

-fflJo J -iJ t

+ ••• + •• dr dp!dm
\

or
Jo I I

p'(^Ro^’ + Rir +F^^+ ...+F,^ + ...^drdp,'deo',

according as r, the distance of the attracted point from the
origin, is greater or less than r'. We shall proceed soon to

use these formulie
;
but we must first find the value of F for

a perfect sphere.

Prop. To calculate the value of Vfor a homogeneous sphere.

41. Let the centre of the sphere be the origin of the polar

co-ordinates {r'p,'a') to any element of its mass, and the line

through the attracted point be that from which the angles are
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BODIES NEARLY SPHERICAL. 37

measured, and p the density. Then — pr'^dr'dp.'da' is the
mass of the element : its distance from tlie attracted point

= Vr* + r'* — 2rr cos to.

Hence, a being the radius of the sphere,

pr'^ dr' dp.'dam 2,

(> Vr"+ r'* — 2rr'p'

from p' = -l top'll,
=27rpJ‘‘~ |(r+r') + (r-r')

J

dr',

when the attracted point is without, and + when it is
within the shell,

ft 3r
’

when the point is without the sphere.

When the point is within the sphere, the part of F for the
shells which enclose the point

= 27rp
J

2r dr = 27rp (o* — r*) :

and the part of F for the other shells of the sphere

Hence V= ^ for an external particle,

F= 27rpa* - - 7rpr® for an internal particle.
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38 ATTRACTIONS.

Prop. To find the attraction of a homogeneous body, differ-

ing littlefrom a sphere inform, on a particle without it.

42. Since the attracted particle is without the attracting

mass, we must expand F” in a descending series of powers of r,

and shall therefore use the first of the expressions for V in

Art. 40. Let the mean radius of the hody = a
;
and let

a (1 + y) be the variable radius, y' being a function of g.’

and ft)', and its square being neglected.

Then, for the excess of the attracting mass over the sphere

of which the radius = a, efiecting the integration with respect

to r' from r' = a to r’ = a (1 + y), the value of V

= ?/'/“ + + +••}/<*/'<*»•

But if y, the same function of fi and to that y' is of p and
0)', be expanded in a series of Laplace’s Fxmctions, viz.

+ + ••• + P1+...
>

then the theorems of Art. 26 and 32 show that

ry’Pfiyidto’ = f‘ r Y;P,dfi'dto’ = Y,.

Hence the value of V for the excess over the sphere becomes

and the part of V for the sphere, rad. = a, is

47rpa*

3r
•

Hence for the whole mass

4^ 4^* „ a

3r r (2i+ l)r‘
i Pj + •••} •

This is the first example in which we see the great value of

the properties of Laplace’s Functions
;
they here give us at
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BODIES NEARLY SPHERICAL. 39

once the integrals involved in our expression for V, in terms

of the equation to the surface of the attracting mass, without

integration.

From the expression for V the attraction can be immediately

found by the formula of Art. 20.
,
Thus

attraction =—5-
dr

_ 47T/>a®

“ 3r*~

47rpa“
{^0 +

2a

Zr

l)a* ym \

{2t + iy
Prop. To find the attraction of a homogeneous body, differ-

ing hut littlefrom a sphere, on a particle within its mass.

43. We must in this case expand V in an ascending series

of powers of r; and shall therefore take the second of the

series of Art. 40. By proceeding as in the last Proposition,

we find that the part of V which appertains to the excess over

the sphere

nSir /
{a*Pp + arJ^ + ... + jPj+ ...}y'dfi do),

or =47r/>a*{F,+ — r,+ ...}.

Adding to this the part of V which appertains to the sphere of

2
radius a, viz. 27rpa* — - ttot*, for the whole mass,

O

r=2wpa*-|7T/»^+4Trpa*{r<, +^ (2t^iy

dV
And the attraction =—j—

ar

F1+ ...+
tr*“*

(2i+l) a'

We can show that by properly choosing the value of (a) and
the origin of the radius of the surface we can make Fj and F,

disappear from the above formulas.
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40 ATTHACTIONS.

Prop. To show that hy choosing a equal to the radius of the
sphere ^ which the mass equals thai of the aitracting body we
cause to vanish, and by taking the centre of gravity of the

body as the origin of the radius vector, we cause Y, to vanish.

44. The mass of the body

m Sir If* f®'
r'drdgda) = xp I I i^d/i dw,

)
o J ^iJ g

where r is the radius vector of the surface of the body, and
= a (1 +y) suppose. Putting this for r mass of body

= mass

= mass

of sphere (rad. = a)+pa’ f f ydfidw
^ -1*' 0

of sphere + pa* f f Y^, by Art. 26,
-1'' 0

= mass of sphere + 47rpa®

If then a be taken equal to the radius of the sphere of which
the mass equals the mass of the body, = 0, as was stated.

Again, let i be the co-ordinates to the centre of gravity

of the body, M its mass : the co-ordinates to the element of

which the mass is — pr^drdfidw are

r V 1 — p* cos 0), r — p,® sinta, andr/i;

M.x=j
j j

pr*Vl — p,*coso)tfrJ/it?ci)

j r* r2tr

= - 1 I pr* Vl — /A* cos adfidoa,
-1^ 0

M.y={ f f
pr* Vl — p,® sin oadrdfidm

J qJ -IJ 0

2 r 1 r 2ir

=
-j j

prWl— /x®sinft)tf/4(ia),
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BODY CONSISTING OP NEARLY SPHERICAL STRATA. 41

M.z=j
J j

pr*/idrd/u,do) = j J J
x*iJ,dp.d(o-,

putting r = a (1 + y)
= a (1 + + ... + F, + ...), and ob-

serving that Vl — /i* cos 0), vrr /i* sin ©, and fi satisfy

Laplace’s Equation, and are of the first order, we have *by

Art. 26,

M.x = pa,*
j j

E, Vl — /i® cos adpda),
J -I J 0

n 2ir

Y^Vl — p,* sin <odp.do),

)

M.z = pa,* f f Y^p.dp.d<ii.

0

But E,
,
being a function of Vl— /x.® cos xb, and Vl — /a* sin <»

of the first order, is of the form

aVi- /i,® cos a> + B \/l — /A* sin to + (7/t

;

- 4 —4 -4
.*. M.x = -irpe.*A, M.y=-trp9^*B, M.z = -trp&^ G.

Hence if we take the origin of co-ordinates at the centre of

gravity and therefore a = 0, y = 0, z = 0, we have A = 0,B= 0,

(7=0, and therefore Ej = 0, as stated in the enunciation.

Prop. To find the attraction of a heterogeneous body upon
a particle without it; the body consisting of thin strata nearly

spherical, homogeneous in themselves, but differing one from
another in density.

45. Let o' (1 +y') be the radius of the external surface of

any stratum, o' being chosen so that

y' = E;+ E,' + ... + E; + ... (Art. 44).

Since the strata are supposed not to be similar to one
another, y' is a function of o' as well as of p! and ta'. Let

p be the density of the stratum of which the mean radius

18 o'. Now the value of V for this stratum equals the differ-

ence between the values of V for two homogeneous bodies of
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42 ATTRACTIONS.

Saj!.

the density p and mean radii cl and ol — dd. But for the

body of which the mean radius is d (Art. 42)

47rp'a- 47Tp'a" fa' a" 1

is; (27+1)7*
+ -r

Hence for the stratum of which the external mean radius

is a',

„ 47rp'a'*j ^ird d fa'* o'*'*'’ ] 7 »

and therefore for the whole body,

47t /•“
, f ^ .

d (d*
. .

a"^> ^

^=TJ/ r + rfa'fc^‘+-+(2i + l)r‘^‘+-J

From which the attraction is easily deduced.

Prop. To find the attraction of the same body on an in-

ternal jnirticle.

46. Let r = a (1 +y) be the radius of the stratum in which
the attracted particle lies. Then for the strata within the

surface of which the radius is a (1 +y), we have

r= V' ^ y/ + - + +•••)}"•

But for a stratum external to the particle we have by
Art. 43,

r=4V»'<i.'+4V;^{f^ r;+ ...

Consequently for the whole body,

7 />' s -
+

(

2^ + •••)}

+ 4.|yf*+^(r + (271^
From this the attraction is readily obtained by differ-

entiating with respect to r.
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CHAPTER IV.

ATTRACTION OF BODIES NEITHER SPHERICAL NOR SPHEROIDAL,
NOR NEARLY SO.

47. The methods which have hitherto heen given enable

us to find the attraction of the Earth and other bodies of our

system considered as a whole. But, taking the Earth as our

example, the surface is irregular, and neither exactly spherical

nor spheroidal. We ought, therefore, to be able to calculate the

effect of these irregularities, and with this view the present

Chapter is added to what has gone before. High Table-lands

may very materially affect the position of the plumb-line in

some places. Enormous irregular mountain masses, like the

Himmalayas, may do the same. Their effect ought, therefore,

to be carefully estimated, as all instruments which are fixed

by the plumb-line or spirit-level must be affected by such
irregularities.

Prop. To find the attraction of a slender prism of matter

on a point in the line drawn to one of its extremities.

48. Let AB be the prism, G the attracted point, P any
element of the prism, AP= r,

M the mass and I the length

of the prism, AC=a, BG=b,
PC= y, angle PA G= 6.

Then the mass of the ele-

ment at P= Ify .

Attraction of element at P

on G=M% i
^ it

Ditto in direction

CA =M% ^ cos PCM
I it
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Mdr a — r cos Q
y* = o* + r* — 2ar cos 0,

_ Mdr a sin' 0 — cos 6 {r — a cos 9)

I
’

{a' + »•* — 2ar cos 0}*
’

attraction of whole prism

M r — a cos 6-\-a cos 6

^ a Va' + r' — 2ar cos 6
from r = 0 to r = ?,

M I M
Va* + Z* — 2al cos 6

As this is symmetrical with respect to a and h, it shows
that the particle is attracted equally towards the two extre-

mities of the prism
;
and that therefore the resultant attraction

acts in a line bisecting the angle which tlie prism subtends at

the attracted point.

Prop. To find the attraction of a slender pyramid of any
form upon a particle at its vertex; and also of afrustum of the

pyramid.

49. Let I be the length of the pyramid, a the area of a
transverse section at distance unity from the vertex; r the

distance of any section
;

ar' is its area
; p the density of the

matter : then ar^pdr is the mass of an element of the pyra-
mid, and this divided by r® is its attraetion

;

.•. attraction of pyramid on vertex = / apdr = apl.
J 0

Ifd is the length of any frustum of the pyramid, and l=l'-\-d,

then

attraction of pyramid, length Z', = apH
;

.’. attraction of frustum = apd.

It is observable that this is quite independent of the distance

of the frustum from the vertex
;
and tnerefore all portions of
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AN EXTENSIVE PLAIN. 45

the pyramid of equal length, any where selected, attract the

vertex equally.
50.

CoK. Suppose the angular width of the pyramid to

be yS and to remain constant, while the angular depth varies

;

and let h be the linear depth of the transverse section of the

base
;
then is the area of the base

;
and the attraction of

the whole pyramid on the vertex = p^h. Hence, all pyramids
having the same angular width and the same linear depth at

the base attract their vertex alike, whatever their lengths be.

Prop. To find the attraction ofan extensive circular plain

of given depth or thickness upon a station above its middle

point.

51.

Let t be the thickness or depth
; h the height of the

particle from the nearer surface, c the radius, r the radius of

ary intermediate elementary annulus of the attracting mass,

z its depth. The several elements of this annulus of matter

will attract the particle towards the plain equally. Hence
attraction of the particle

_ f' r‘ 27Tpr {h + z)drdz _
d 0 d 0

{r*+(A + ^r}

dz
,-= 2ttp

d ft

-I

jconst. —
fi^+{h+zy

— > dr

dr
v7T(rro«j

'

= 2'rrp {Vc^+ A'* — h — + (A + ^)* + A + 1]

= in/,
[<
- V?TV {(l + - l}]

4
I

h \t= 2'TTpt-ll + ...^ .

I Vc* + A*

52.

If the plain be of infinite extent, the attraction equals

2TTpt
;
and this remarkable result is true, that it is independeiit

of the distance from the plain. The same will be the case if

the height of the station above the middle of the attracting
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mass below, that is, be so small that it may be neg-
lected in comparison with the distance of the station from the
furthest limit of the plain.

63. Ex. Suppose the height of the station above the

middle of the mass below, that is, A + is ^ a mile and c

10 miles. Then the second term within the brackets is less

than 0'05, and the attraction is very much the same as if the

plain were unlimited in extent.

54. Cor. The result of this Proposition when the plain

is unlimited in extent might have been foreseen from the

result in the previous Proposition regarding the attraction of

the fnistum of a pyramid. Conceive an infinite number of

slender pyramids to be drawn from the station intersecting

the attracting plain
;
they will cut out of it an equal number

of frustra, and the cosines of the angles they make with the

perpendicular to the plain will be the thickness divided by
the lengths of the frustra. But the attractions of the fimstra

are proportional to their lengths, and independent of the

distance from the attracted point
:

(see Art. 49). Hence the

resultant attraction of the whole will depend solely upon the

thickness or depth of matter constituting the plain.

Prop. To find the oMraction of a rectangular mass, of
small elevation compared with its length and breadth, upon a
point lying in the plane ofone of its larger sides.

55. Let the attracted point be the origin of co-ordinates

;

the axes of x and y parallel to the long edges of the tabular

mass, the axis of z being measured upwards. Let x'y'z be
the co-ordinates to any point of the mass : xy co-ordinates to

the nearest angle, AT to the farthest angle, H the height of

the mass
; p the density, supposed the same throughout.

Then pdxdy'dz' is the mass of the element; and the

height being small, we may suppose the element projected on
the plane of xy. Hence the whole attraction parallel to x

X dx'dy'dz rr x'dx'dy'
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RECTANGULAR MASS. 47

To simplify the formula put

— = tau 6., ^= tan 6„ ^ = tan 6,, ^ = tan 6 .

;

X ^ X * X * a;
*

/, T*
,
y l+8in0,

, .o.

V “^^osX
and so of the rest. Hence, since 0'434 is the modulus of

common logarithms,

attraction = log tan (45® + i + log tan (45® + ^ 9^

. — log tan (45® + i ^g) — log tan (45® + ^ ,

which gives a remarkably simple rule for finding the attraction

parallel to xi that parallel to y can be found in like manner.

It is easy to show, that if the density be half the mean
density of the earth, that is, about the same as granite, g be
gravity, the radius of the earth = 20923713 feet, and M be

expressed in feet, the coefficient above = .

This equals gH tan
j

• Hence, since the tangent of

deflexion of the plumb-line caused by the attraction equals,

by the parallelogram of forces, the ratio of the attraction to

gravity, and the angle is very small.

Deflexion of plumb-line caused by the Tabular Mass
parallel to the axis of x
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=^ i?|log tan (45® + ^0.) + log tan (45® + ^0^

- log tan (45® + - log tan (45® + .

It is evident that the Tabular Mass may be partly below
and partly above the plane of xy, so long as the height or

depth is not so great that its square may not be neglected in

comparison with the square of the distance from the attracted

point. In this case II is the sum of the height and depth,

above and below the plane of xy.

56. Ex. 1. The co-ordinates to the nearest and furthest

angles of a tabular block of rock measured from the attracted

point are 3 and — 16, 40 and 30 miles, and the height of the
mass from bottom to top is 628 feet. Show that the deflexion

of the plumb-line parallel to the shorter side of the parallelo-

gram = 3"- 17 2.

Ex. 2. A table-land 1610 feet high, commencing at a
distance of 20 miles from Takal K’hera, near the Great Arc
of Meridian in India, runs 80 miles north, and 60 miles to the

east and 60 to the west. Find the deviation of the plumb-
line at that station. It is about 5"; so considerable as ma-
terially to affect the Survey operations, and to have rendered

it necessary to abandon that place as a principal station.

In cases where the attracting mass is near, it is necessary to

cut it up into prisms and calculate the effect of each separately

and add the results. Examples of this are seen in the cele-

brated case of Schehallien, and more recently in the calculation

of the deflexion at Arthur’s Seat, Edinburgh, by Lieut.

Colonel James, Superintendent of the Ordnance Survey. See
Phihsoplncal Transactions for 1856, p. 591.

57. The irregular character of the surface of the Earth
over large tracts of country, consisting of mountain and valley

and ocean, may in some instances have a sensible effect, by
presenting an excess or deficiency of attracting matter, upon
the position of the plumb-line, in such a way as to derange
delicate Survey operations. Hindostan affords a remarkable
example of this, as the most extensive and the highest
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IRREGULAR SUPERFICIAL STRATUM OF THE EARTH. 49

mountain-ground in the world lies to the north of that con-
tinent, and an unbroken expanse of ocean stretches south down
to the south pole. Both these causes, by opposite effects,

make the plumb-line hang somewhat northerly of the true

vertical.

In the following Propositions a method is laid down for

calculating the attraction of an irregular superficial stratum

of the Earth’s surface, and making it depend altogether upon
the contour of the surface. The method pursued is this : A
law of geometric dissection of the surface is discovered which
divides it into a number of four-sided spaces, such that if the

height of the attracting mass were the same in them all, they
would all attract the given station exactly to the same amount,
whether far or near. In this case it would be necessary only

to calculate for one space, then count the number of spaces in

the country under consideration, and the final result is easily

attained. The country being supposed irregular, the heights

in the spaces will not be all alike. The principle, therefore,

should be stated thus, that the attractions of the masses on
the several compartments are in proportion to their mean
heights. These mean heights are known by knowing the

contour of the country.

Prop. To discover a Law of Dissection of the surface of the
earth into compartments, so that the attractions of the masses of
matter standing on them, upon a given station, shall be exactly

proportional to the mean heights of the masses, he they far
or near.

58. Suppose a number of great circles to be drawn from the

station in question to the antipodes, making any angle fi, each

with the next, thus dividing the earth’s surface (which we
may in this calculation suppose to be a rohere, without incur-

ring any sensible error) into a number ofLunes. Then, with

the station as centre, describe on the surface a number of cir-

cles, at distances the law of which it is our object now to

determine, dividing the whole into a number of four-sided

conmartments.

We will begin by calculating the attraction of a mass of

matter, standing on one of these compartments, at a uniform

height throughout, upon the station in a horizontal direction.

P. A. 4
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Let a and a + ^ be the angular distances from the station of

the two circles bounding this compartment
;
h the height of

the mass
; 6 the angular distance along the surface of an

elementary vertical prism of the mass; a the radius of the

earth
;

'sjr the angle which the plane of 6 makes with the plane

of the mid-line of the lune, and in which latter plane the re-

sultant attraction evidently acts. The area of the base of the

prism = a* sin QdrifdQ.

Since the height of prism (7i) is supposed very small, the

distances of its two extremities from the station may be taken

to be the same, and = 2a sin \B. Its attraction along the chord

of 0, by Art. 48,

_ po^h sin 6d9d-^~
4a’'sin*^0

Attraction along the tangent to ^ coa^d;

attraction along the tangent to the mid-line of the lune

_ ph coa* ^Odd d^jr
,

^inp

.•. attraction of the whole mass

2 J-ipam^0 ^ ^

I • 10 f^coa^iB jn •

= sin [log,
^ +cosi{a+i^) -cos Ja]
tRn ^ C(

„ 7 • 1 /> fi sin (ia+id>) + sini<A „ . 1 • 7 ,7= 2pA sm (log. -2«'" (i«+i«

= kph sinP sin
^<f)

sin +
sin (p + p)|
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LAW OF DISSECTION OP THE MASS. 51

neglecting only the cube and higher powers of sin
^<f>,

= ph sin neglecting &c.

The law of dissection we shall choose will simplify this

;

for we are to assume such a relation between
<f>
and o that the

expression in ^ may be constant, in order to make the attrac-

tion the same for all compartments in which h is the same
or varying as h where the heights of the masses standing on
the compartments are different. As the value of the constant

to which we equal the function of a and <ft is quite arbitrary,

we will assume it such that when a and
<f>

are small, (j> shall

= In this case it = 10 ’* _ ^
+ 21

Hence ^ cos* (^a + l<f>) _ 4

sin (^a + i<f))

defines the Law of Dissection.

21 (
1 ),

The attraction of the mass standing on the compartment,

in consequence,

= sin i/3;

an exceedingly simple expression. We may obtain it in

terms of gravity as follows. Let p the density be the same
as that of the mountain Schehallien, viz. 2.75; the mean
density, according to Mr Daily’s repetition of the Cavendish

experiment, being 5.66
; g gravity ;

a = 4000 miles.

,, 4‘7t j .. 47T 566
Now g = -^ax mean density = -5- a^ p ;

.*. attraction of mass on any compartment

= -9 = 0.000005523A sin i/3.0,
12 47t 566

being expressed in parts of a mile.

4—2
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Since 0.000005523 = tan (1". 1392)

;

deflection of the plumb-line caused by this attraction

= 1".1392A sini)9 (2).

The method of using this theorem is as follows. When the

numerical values of the successive pairs of a and ^ are deter-

mined by the solution of equation (1) giving the law of

dissection, lay them and the lunes down on a map of the

country the attraction of which is to be found. It will thus

be covered with compartments. After examining the map,
write down the average heights of the masses standing on all

the several compartments of any one lune
;
add them together,

multiply the sum by 1''.1392 sm and equation (2) shows
that we have the deflection caused by the mass on the whole
lune in the vertical plane of its middle line. Multiply by the

cosine and then the sine of the azimuth of that middle line,

and we have the deflections in the meridian and the prime-
vertical. The same being done for all the lunes, and the

results added, we have the effects in meridian and prime-
vertical produced by the whole country under consideration.

59. Cor. That the mass on each compartment wdll attract

as if collected at the middle of the mid-line appears from what
follows. Let 0 be the distance at which the matter may
be concentrated so as to produce the same effect as the actual

mass. Now the area of tne compartment

ro4^ r r

=
1

I a*Bm.6d6d‘ylr = a*fi
\

BiixOdd
Ja J -iP J a

= a*/8 (cos a — cos (a + ^)} = 2a^/3 sin sin (a + ^).

Then by the last Proposition,

ph sin ij8
(f)

cos^ (^a -f i<f>)

sm (ia + i(f>)

= attraction

= ph
2a*y9 sin ^<f> sin (a + ^(f>)

40* 8^40

,
by hypothesis

cos |0 ;
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DIMENSIONS OP THE COMPARTMENTS. 53

•
sin^(^ sin* (^g +

cos ^0' sin ^/9 cos (^a + l<p)

'

Hence, if /9 be not taken larger than 30®, and since <j> is

always small, this gives 0 = a + which coincides with the

middle of the mid-line of the compartment.

Prop. To calculate the dimensiom of the successive compart-

mentsfrom the law of dissection.

60. For this purpose we should solve the equation of last

Proposition, viz. <

4> cos* (^tt + ^<^) _ 4

am{^a + l<f)
21 ^

But this cannot be done. We must therefore approximate,
which will equally well suit our purpose. In order to afford

a test of the values we arrive at the equation may be written

under the following form. Putting the angle
(f>

for the

arc
<f>,

. 0 _ sin (^g + j-^)
_* ~ 21 It cos* (^a 4-

’

or = log“V

11.0379639

+ log sin (i« + i<f>)

- 2 log cos (io + i^)J

(3).

Equation (1) can be solved by expansion so long as o and

<f)
axe not too large.

It gives
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= ^(l+0.24lla*),

or, if a be expressed in degrees,

= (1 + 0.000073a*) (4).

Let Oj o, o, 0, ... be the successive values of a and 0
for the several compartments of a lune. These are connected

by the following relations

:

= + Oj = o, + <^„

Suppose that for the first compartment Oi = 0®.75*, then

* ThU particular yalue is here nsed because the calculations following are

taken from a Paper, by the author, in the Philosophical Transactions for 1855,
upon Himmalayan Attraction, and three-fourths of a degree is about the dis-

tance of the nearest hills from the northern station of the Great Indian Arc of
Meridian. Any other ralue for a, might hare been taken. The results above de-
duced are perfectly general, and are applicable to any other similar problem. If

compartments with elevations or depressions occur in the map, nearer to the station

than three-fourths of a degree, or about 53 miles, their dimensions can easily be
ralculated backwards, i.e. towards the station, by the help of the formula

1 1
</>-.”

Jq = JX “-»ti » *i“ce <»-«+ 1
= “-.+</>-• •

The succeeding values, reckoning from a, and <f>i are here given, as they may be of
use for reference.

o, =0“.76 0, =0“.076

ao =0.68 <po V 0.068
0-1=0 .62 <p-j = 0 .062

o-a = 0 .56 <p-a = 0 .056

0-3 = 0 .51 0-3 = 0 .061

0-1 = 0.46 0-1 = 0.046
0-3 = 0 .42 0-, = 0 .042

0-3 = 0 .38 0-3 = 0 .038

o-r = 0.34 0-, = 0.034
0-3 = 0 .31 0-3 = 0 ;031

0-3 =0».28
o.,o = 0 .25

0-1, = 0 .23

o—

j

3 = 0 .21

0—13 = 0 .19

o_,i = 0 .17

o-,3 = 0 .15

o-„ - 0 .14

o-ir = 0 .13

&c.

0-3 =0®.028

0—13 = 0 .025

0-„ = 0 .023

0-13 = 0 .021

0-,j = 0 .019

0-11 = 0 .017

0_,j = 0 .015

0-13 = 0 .014

0-17 = 0 .013

dec.
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HIMMALAYAN ATTRACTION. 55

by (4) = 0®. 075 ;
therefore ol = 0®, 825 : and by proceeding In

this way we obtain the following pairs of values by this

formula.

a, =0®.75 =0®.075

c?* = 0 .83 = 0 .083

c, =0.91 =0.091
a, = 1 .00 = 0 .100
= 1.10 (

f), = 0.110
O3 =1.21 <jE)j =0.121
Oj =1.33

<f>,
=0.133

ff, =1.46 ^,=0.146
c, =1.61 ^9=0.161
«io
= l-77 0,0

= 0.177

a„ = 1 .95 = 0.195
a„ = 2.14 0,9 = 0.214

a,3 = 2.35 0,3
= 0.235

a„ = 2.59 0„ = 0.259

0,3 = 2 .85 0,3 = 0 .285

0,3 = 3.13 0,3 = 0.313

o„ = 3.45 0„ = 0.345

«.8 = 3.79 0,3
= 0.379

0,9
= 4.17 0,9

= 0.417

o„ = 4.59 039
= 0.459

o„ = 5 .05 03,
= 0 .505

o„= 5® .55 0„= O®.555

0,3=6 .11 0„ = 0.611

093=6 .72 0,3= 0.672
= 7 .39 0„ = 0.739

0,3=8 .13 0,3
= 0.813

o„ = 8 .94 0„ = 0.894

0,3= 9 .83 0,3
= 0.983

0,9=10.82 0,9=1.089
0,9=11.91 0,9=1.202
o„= 13.11 0„ = 1.326

o„= 14.43 0„= 1.462

0,,= 15.99 0,3=1.620
o„= 17.61 0„ = 1.800

o„= 19.41 1.992

0,3=21.40 0,3 = 2.211

o„ = 23.61 03,
= 2.456

0,3=26.06 038
= 2.732

0,9=28.79 0,9
= 3 .0o4

0,9 = 31.84 0,9
= 3.419

o„ = 35.26 03,
= 3 .600

0,9= 38.86 03,
= 4.314

That these results derived from the approximate fonnula

(4) are thus far correct, we gather from the fact that tlie last

pair, viz. o., = 38“.86 and 0,3
= 4®. 3 14 sufficiently satisfy the

te.st (3) when substituted. Beyond this pair, we cannot

use (4), but must solve equation (1), or rather (3), by trial.

This leads to the following pairs of values stretching to

the antipodes.

a,3 = 43®.17 0,3 = 4®.98O

0,3 = 48.15 0,3 = 5.783

o« = 53.93 0„= 6.800

0,3 = 60.73 0,3
= 8.210

o„= 68®.94 0„=1O®.3.3O

0,3= 79.27 0,3= 14.030

0,9= 93.30 0,9 = 23.380

Oj3 = 1 1 6 .68 0J9 imperfect.

Digitized by Google



56 ATTRACTIONS.

61 . The formulae here deduced may he applied to find the

effect on the plumb-line of any mountain-region, or hollow (as

in the case of the ocean), so long as the angle subtended at

the station by any part of it is such as to allow its square to

be neglected

In the Philosophical Transactions for 1855 and 1858-9, the

author has applied these principles to find the effect of the

Himmalayas and the mountain-region beyond them on the

plumb-line in India, and has found that the meridian deflection

caused in the northern station of the Great Arc of Meridian
(lat. 29® 30' 48", and long. 77® 42') is nearly 28", as far as the

data regarding the contour of the mass can be ascertained;

and that the astronomical amplitudes between that and the

next principal station (lat. 24® 7' 11"), and between that and
the third (lat. 18® 3' 15"), are diminished by the quantities 15". 9

and 5". 3. He has also shown that the meridian deflection be-

tween the first and third of these stations varies very nearly

inversely as the distance from a point in the meridian in lati-

tude 33® 30'.

62 . The effect of the deficiency of matter in the Ocean
south of Hindostan down to the south pole is also calculated,

upon an assumed but not improbable law of the depth, and
found to produce a meridian deflection northwards at the three

stations specified of about 6", 9", 10". 5 respectively; and
19". 7 at Cape Comorin.

63. It is possible that, the superabundant matter in

mountain-regions having been heaved up from below, there

may be a deficiency of matter below the mountains which
would under certain circumstances have the tendency of

counteracting their effect on the plumb-line. This Mr Airy
has suggested in a Paper in the Philosophical Tranao/ctions

of 1855, on the hypothesis that the deficiency is immediately
below the mountains close to their mass. Upon the supposi-

tion that the mountains may have drawn their mass from
the regions below through a considerable depth, by an exten-

sive and small expansion of the matter in those lower regions,

the author has calculated the modifying effect on the plumb-

Digitij- by Googli.



EFFECT OF EXCESS OR DEFECT IN MASS BELOW. 67

line in the Tramactwns for 1858-9. This has brought to light

the fact, that a trifling deviation in the density from that

required for fluid-equilibrium, if it prevail through extensive

tracts, may have a sensible effect upon the plumb-line. The
following Proposition, with which^e shall close this Chapter,

will show this. These questions, in themselves interesting as

problems in Attraction, become still more so, as we shall see,

in the determination of the Figure of the Earth.

Prop. To find the efil^ect on the plumb-line of a slight hut

wide-spread deviation in density in the interior of the earth,

either in excess or defect, from that required by the laws of
fluid-equilibrium.

64. Suppose vertical lines drawn down through the four

angles of any compartment to a depth d, and a surface xmiting

the four extremities drawn, so as to form the frustum of a
pyramid of which the vertex is in the centre of the earth:

draw also a vertical line of length d through the mid-point of

the compartment. Suppose the height of the matter standing

on the compartment to be uniform and equal to one mile.

Let the several vertical prisms of which it consists be con-

ceived to be distributed downwards uniformly through the

depth d, the density of this lengthened prism will be less

than that of the superficial rock in the ratio of 1 : <f. Let u
and V be the distances of the extremities of this long prism

from the station. Then the attraction of the short prism
TUASS

along the chord of the surface =—
,
and (by Art. 48) that

of the longer
mass

uv
Hence along the horizontal line at the

station
attraction of slender prism

attraction of the prism at surface

«
V

Now in Art. 59, it has been shown that the attracting mass
on any compartment may be considered concentrated in the

mid-point. Much more may this be done with the horizontal

layers of the frustum which are not of larger dimensions than
the compartment, and are farther off from the station. Hence
if u, and v, be the distances from the station of the extremities
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of the vertical line d through the middle point of the mid-line

of the compartment, the attraction of the mass on the com-
partment, and the deflection caused it, must both be

diminished in the ratio of u. to v, to lind the eflfect of the

same mass distributed thrc^gh a depth d. Suppose the masses

(one mile high) on n compartments of any lune are thus

distributed; then by Art. 58, formula (2),

Deflexion = l". 1392 sin ^ + 2> +

If ;9 = 30®, the coefficient = 1". 1392 x 0.258 = 0". 294.

65. We will take an example. Let the width of the lune

/9 = 30®, and let the 21 compartments from o, to (see Table
in Art. 60) be included. This will be a tract of country
5®.55 — 0®.75 = 4®.8, or 334 miles in length, and the breadth

at the mid-point will = sin ^ (5®. 55 + 0®. 7 5) x the length

of 30®= 0.055 X 30 X 69.5 = 114 miles; and, by spherical tri-

gonometry, the area is, in round numbers, 38,500 square miles.

We will take three examples of depth which (for convenience

of calculation) we will express in the length of degrees, viz.

3®, 6®, and 9®; which nearly equal 208, 417, and 625 miles.

The vertical thicknesses of these three divisions of the frustum

are each = 3® = 208 miles. The widths, however, parallel to

the horizon grow less in passing downwards. But owing to

the convergency of the radii bounding the elementary prisms,

the density increases in the distribution of the matter in

exactly the same proportion that the area of the horizontal

section diminishes. The amount of matter in the three divi-

sions is therefore the same, and we may consider the volumes

the same, and each equal to 38,500 x 208 = 8,008,000 cubic

miles = 3-100,000th parts of the volume of the whole earth.

Now since the greatest of ... is less than 6®, we may
take the arc for the chord without sensible error. Then, with

respect to all these quantities, - = the cosine of the angle of

%

which
^

is the cotangent. This enables us without difficulty
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with the help of a Table of cosines and co-tangents to form

the sum of the series in the last Article. The values of u fire

the first 21 values of a in the Table in Art. 60.

d==
3“ d == 6® d == 9“

ooII
S u

cos = -
V

-} = cot
a

u
cos = -

V
j = COt
a

u
cos= -

V

0.250 0.242 0.125 0.124 0.083 0.083

0.277 0.267 0.138 0.137 0.092 0.092

0.303 0.290 0.152 0.150 0.101 0.100

0.333 0.316 0.166 0.164 0.111 0.110

0.367 0.344 0.184 0.181 0.122 0.121

0.403 0.374 0.201 0.197 0.134 0.133

0.443 0.405 0.222 0.217 0.148 0.146

0.487 0.438 0.243 0.236 0.162 0.160

0.537 0.473 0.269 0.260 0.179 0.176

0.590 0.508 0.295 0.283 0.197 0.193

0.650 0.545 0.325 0.309 0.217 0.212

0.713 0.581 0.356 0.335 0.238 0.232

0.783 0.617 0.392 0.365 0.261 0.253

0.863 0.653 0.431 0.396 0.288 0.277

0.950 0.689 0.475 0.429 0.317 0.302

1.043 0.722 0.522 0.463 0.348 0.329

1.150 0.755 0.575 0.498 0.383 0.358

1.263 0.784 0.631 0.534 0.421 0.388

1.390 0.812 0.695 0.571 0.463 0.420

1.530 0.837 0.765 0.608 0.510 0.454

1.683 0.860 0.842 0.644 0.561 0.489

sums = 11.512 = 7.101 = 5.028

multiply by
0".294 ==3".385 2".088 = 1".478

From this Table we gather, that the Deflections caused at

the station by the superficial mass one mile thick, when dis-

tributed uniformly through the depths 208, 417, 625 miles,

are 3". 385, 2". 088, 1".478. The densities of the matter thus
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diffused in these three cases are about -j^^th, j^th, ^th
of the density of the superficial rock. If we multiply the
above deflections by 2, 4, 6, we have the deflections caused by
matter, of 1-lOOth the density of superficial rock, distributed

over the three depths, equal to 6".770, 8". 352, 8". 868. Ke-
taining the first, subtracting the first from the second, and the

second from tlie third, we have the three deflections caused by
a mass of 208 miles vertical thickness (occupying 3-100,000tn

parts of the volume of the whole earth and of density 1-100 th

S
art of the density of the surface) the centre of which is at

epths 104, 312, 521 miles: they are 6".770, l".582, 0".516.

We may finally change the comparison between the density

of this space, 3-1 00,000 ths of the earth’s volume, in its three

situations, with the density of surface, to a comparison with
the average density of the earth itself at the several depths

at which the centre of the space lies.

IfD be the density of the surface, a the radius of the earth,

the usually received law of density of the interior, determined
from the fluid-theory, is

Density at depth d =
2aD
a- d

sin

When d= 100, 300, 500 miles, this gives the densities

1.142), 1.432), 1.712).

Multiplying the last angles by the ratios of these densities

to 2), we have finally the Deflections—caused by an excess

or defeet of matter, prevailing through a space equal to

3-100,000th parts of the volume of the earth,and 1-lOOth part

of the earth’s density at the centre of the space—equal 7”. 7,
2". 3, and 0".9, the depths of the centre of the space being
about 100, 300, 500 miles.

The form of the space in its three positions is shown in the

diagram; viz. 2) (2, FI, HK\ and 0, P, Q are their centres.

The particular form arises from the manner in which the mass
is dissected, so as to make the calculation feasible. The result

serves to show the kind of efieet which slight but extensive

variations from the density of fluid-equilibrium in the hidden
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EFFECT OF EXCESS OK DEFECT IN MASS BELOW. 61

regions below may have upon the plumb-line : and we shall

tind the use of this when we come to consider the Figure of

the Earth : (see Art. 98).

66. Had the width DB been equal to the middle width

at a, so as to make the boundaries BG., BE parallel, the effect

A B

would have been very much greater. Moreover the defect or

excess in density which we have taken, viz. 1-lOOth, might
have been chosen larger, and the deflections proportionably
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increased. For there are many kinds of rock, as granite,

which differ so in density in the different specimens that the

difference between the extremes is greater even than 1-10 th

of the mean. And if this difference exists at the surface, it

does not seem to be improper to suppose that great variations

may exist also below, from the effect of the cooling down and
solidifying of the crust, even much greater than 1-100 th.
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FIGURE OF THE EARTH.

CHAPTER I.

THE FIGURE OF THE EARTH CONSIDERED AS A FLUID MASS,

AND THEREFORE CONSISTING OF STRATA

NEARLY SPHERICAL.

67. After it was known that the earth is of a globular

form, Newton was the first who demonstrated that it is not

a perfect mhere. From theoretieal eonsiderations and also

from the diseovery that a pendulum moves slower at the

equator than in higher latitudes, he arrived at the conclusion

that its form is that of an oblate spheroid. This subject we
propose to consider fully in the present Chapter, on the

hypothesis that the Earth was a fluid mass when it assumed
its present general form. The calculation is one of great

difficulty, and would indeed be impracticable did we not know
that the figure differs but little firom a sphere.

As a first approximation we shall inquire whether a ho-
mogeneous fluid mass revolving about a fixed axis can be
made to maintain a spheroidal form according to the laws of

fluid pressure.

Prop. A homogeneous mass of fluid in the form of a
spheroid revolves with a uniform velocity about an axis: re-

quired to determine whether the equilibrium of the surface left

free is possible.

68. Let a and c be the semi-axes of the spheroid referred

to three axes of rectangular co-ordinates, c being that about

which it revolves: also let c* = a* (1 — e*). The forces which
act upon the particle {xyz) are the centrifugal force and the

attraction of the spheroid parallel to the axes: these latter

are given in Art. 12, and are
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{Vl — e’* sin"‘ e — e (1 — e*)) x,
€i

{Vl — e’' sin“* e — e (1 — e*)] y,
€

[e — Vl — e* sin”* e] z.

Let these be represented by Ax, By, Cz. Let w be the

angular velocity of the rotation, then w* x* + y* is the cen-

trifugal force of the particle {xyz), and the resolved parts of it

parallel to the axes of x, y, z are w*x, w'y, 0. Hence X, Y, Z,

the forces acting on {xyz) parallel to the axes, are

X=-{A-w')x, Y=-{B-w‘)y, Z=-Cz.

These make Xdx + Ydy + Zdz a perfect diflferential, and
therefore so far the equilibrium is possible.

The equation of fluid equilibrium gives

-dp = Xdx + Ydy q- Zdz
P

= — {A — {xdx + ydy) — Czdz

;

.*. ^
= constant — {A — lo*) {sd + y^ — Cz*.

At the surface p = 0, and therefore

+ y®) + z® = const.

is the equation to the surface; and this is a spheroid, and
therefore the equilibrium is possible, the form of the spheroid

bein^ properly assumed. The eccentricity is given by the

condition

, , c* A-w*
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HOMOGENEOUS FLUID MASS. 65

w* „ 1 — e*

o ^ ^ —*

—

27T/J e

(3-2e*) Vl-e*
sin“‘ e = 0.

Now observation shows thati = the ratio of the centri-
289

fugal force at the equator to gravity at the equator. Hence

1 _ to^a
_ _ 1

289 ^trpa — w^a' ’’
2Trp 435’

By expanding in powers of e and neglecting powers higher
than the second, because we know that the earth is nearly
spherical, we have

. 1 e’ 1 .

3

If € be the ellipticity, then

e = = l-Vl-e’* =
2 232’

This result is so much greater than that obtained by other

methods, as we shall see, that it decides against our consider-

ing the earth’s mass to be homogeneous. Indeed it is h. priori

highly improbable that the mass should be homogeneous,
since the pressure must increase in passing towards the centre

and the matter be in consequence compressed.

p. A. 5
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66 FIGURE OP THE EARTH.

69. Another value of e, nearly = 1, satisfies the equation.

But this does not give the figure of any of the heavenly bodies,

since none of them are very elliptical.

Since there are two values of e which satisfy the equation,

it might be supposed that the equilibrium of the mass under
one of these forms would be unstable, and, upon any derange-

ment taking place, the fluid would pass to the other as a
stable form. But Laplace has shown {M6c. Giles. Liv. iii.

§21) that for a given primitive impulse there is but one form.

In fact it is easily seen that for a given value of w, the angular

velocity, the vis viva of two equal masses, so different in

their form as to have e small and nearly equal unity, must be
very different, and that therefore the mass cannot pass from
one form to the other without a new impulse from without

being given to its parts.

70. The relation between w and e in Art. 68, shows that

as to alters e alters, and vice versft. By putting = 0, we

find the greatest value of w which is consistent with equi-

librium. This after some long numerical calculations gives

17197
e = , and time of rotation = O’ 1009 dav.

27197 ^

71. Before proceeding to calculate the ellipticity on the

hypothesis of the earth’s mass being heterogeneous we will

take the following extreme case. The density increases as

we pass down towards the centre. Suppose that at the centre

it is infinitely greater than elsewhere: that is, suppose the

whole force resides in the centre. The case of nature must lie

between this hypothesis and that of the earth’s being homo-
geneous.

Prop. To calculate the ellipticity of a mass offluid revolving

about a fixed axis and attracted by a force residing wholly in

the centre of the fluid and varying inversely as the square of the

distance.

72.

Ijet M be the mass of the fluid; the other quantities

as before

;
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CENTRAL PARTS ALONE ATTRACTING. 67

. y ,
* -y . t y

Then the equation Xdx + Ydy + Zdz = 0 becomes

M.
r*

{xdx + + zdz) — w* {xdx + ydy) = 0

;

M
... ^cfr-^c?(a:* + y*)=0;

—! 5- (® + y) = constant = C.

Then
w'a

289 M » j
— 290

;

— w*a
wa

1
- or

1 _C 1 »*+y*

r Va;’‘ +y + a* ^ 580 a*

By reversing this, squaring, expanding, and neglecting the

square of
,
this is seen to be the equation to a spheroid.

When a;=0 and y=0, then z = c
;
when z = 0, sd+y* = a*

;

1 -^ c _580_
" c M' a M 580 a’ a 581’

1

^“581 •

This value of e is too small (as we might have expected),

as is too large, to agree with the form deduced in other

ways.

Prop. To find theequaticmofegnilibriiim of a heterogeneous

mass offluid consisting ofstrata each nearly spherical, and re-

volving about afixed axis passing through the centre ofgravity
with a uniform angular velocity.

5—2
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68 FIGURE OF THE EARTH.

73. Let XYZ be the sums of the resolved parts of all the

forces which act upon any particle ipcyz) of the fluid, parallel

to the axes of co-ordinates, p' the density at that point, p the
pressure. Then the equation of fluid equilibrium is

^ = Ydy^-Zdz.
P

At the surface, and also throughout any internal stratum

of equal pressure and therefore of equal density, in passing

from point to point dp = 0.

Hence Xdx + Ydy + Zdz = 0

is the differential equation to the exterior surface and to the

surfaces of all the internal strata
;
the particular value assigned

to the constant after integration determining to which suHace
the integral belongs.

The following property belongs to all tliese surfaces. If ds

be the element of any curve drawn on the surface through
(xyz), and B be the resultant of XYZ-, then the equation may
be written

Xdx Y^Z dz_
R d^'^lR ds

which shows that the resultant force is at right angles to any
line in the surface, and therefore to the surface itself at the

point {xyz).

The equilibrium will be the same if we suppose the rotatory

motion not to exist, but apply to each particle a force equal to

the centrifugal force caused by the rotation. The forces then

acting on the fluid will be the centrifugal force and the mutual
attraction of the parts of the fluid. Let V be the potential

Art. 18) for this mass, then

_dV
dx' dy' dz

are the attractions parallel to the three axes tending towards

the origin of co-ordmates. Let w be the angular velocity of
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HETEROGENEOUS FLUID MASS. 69

totation about the axis of 2
,
taken as the fixed axis; to*.x

and w*.y will be the centrifugal force at the point {xyz). Then
the differential equation to the surface and the strata becomes

or constant = V+ — {a?+^.
A

Let r be the distance of the point {xyz) from the origin,

and B the angle r makes with the axis of 2
,
and cos 6 = ft

:

then y = r* sin’ ^ = (1 — /**) r*. Also let m be the ratio

of the centrifugal force at the equator to gravity at the

equator ^or
j ;

let a be the mean radius of the stratum

through {xyz) ;
a the radius of the equator

;
then

,
M

r* » 4
and M=4w p'a^da = - •;r^(a) suppose,

Ja
.

the strata being considered spherical because of the smallness

of the numerator in the value of m
;

m = 3to’a’

47r<f> (a)
’

and the equation becomes

j
47t 6 (a)

w = —m

constant = F+^m (1 — /x*) r*
O ft

9

this arrangement being made, because the second and third

terms as they now stand, are Laplace’s Functions of the

order 0 and 2. (See Art. 39, Ex. 1.)

Now since the mass is supposed to be fluid and the external

surface nearly spherical, it follows that as the heavier parts,
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70 FIGURE OF THE EARTH.

which are all free to move, will sink through the lighter, and
lie in layers, these layers will also be nearly spherical, other-

wise there will be a greater pressure on one part than on an-

other, and the equilibrium of the layer or stratum will not

exist. We may therefore assume as a consequence of the

fluidity and the form of the surface that the strata also are

nearly spherical.

By Art. 46, we have

+

+

(2f+l)r*

r'

(2i+l)a"^

In this put

r = a (1 + Y*! + ... Yj + ...) and f p'a^da' = (a),
J 0

as before. Then substitute this value of V in the equation

to the strata and equate terms of the order f. (See Art. 35.)

The constant parts give

[dp 47t <^(a)
, ^ f' ' >j '

,

47t ,0(a)

Jy=T -5^+*’"/.'’“'^ + 9-”“

and the terms of the order i give •

except when t = 2, in which case the second side is

m a*4> (a)

6 a* U
By this equation F, is to be calculated, and then the form
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of the stratum of which the mean radius is a is known by the

formula

r = o(l + l^j+ 1^+...+ Yi + ...).

Prop. To 'prove that F, = 0, excepting the case ofi=2.

74. Since P) and p are functions of a, they may be ex-

panded into ascending series of the form

Yf = Wa'+ p = Z) + 2>'a"+...,

where D is the density at the centre of the earth, and is as

well as W and D' independent of a: s, n ... must not be
negative, otherwise Yj and p would be infinite at the centre.

Now when these and the corresponding series obtained by
putting a' for a, are substituted in the equation of the strata

in the last Article, and the first side arranged in powers of a,

the various coefficients ought to vanish
;
excepting when i= 2,

because then the second side is not zero. We shall therefore

substitute these series, and search for values of W and s which
satisfy the condition.

ra nT\t

<f>(a) = 3 p'a'^da' = Da^ +^ + . ..

Jo n + 6

After two easy integrations the equation of the strata

becomes

No value of s will cause these terms to vanish. The only

apparent case is when t = 1, for then by putting s = t — 2 the

part in the brackets vanishes: but in this particular case

« = — 1, and is negative and therefore inadmissible.

Hence the only way of satisfying the condition is by putting

W=0; this shows that F, has no first term, that is, that it

has no term at all and is therefore zero.

Prop. To find the value of F,, and to prove that the strata

are all sphe/rovdal, coruxntric and with a common axis.

I
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72 FIGURE OP THE EARTH.

75. The equation for calculating F, is, hj Art. 73,

Suppose F, (and similarlj F^') is expanded in a series of
powers of J — /i* with indeterminate coefficients to be ascertain-

ed by the condition, that they shall satisfy the above equation.

These coefficients will be functions of a only, as it is clear from
the right-hand side of the equation that a> does not enter into

the value of F,
;
and F^ consists of only one term, that in-

volving the simple power of J — /tV Let it be £ (J — /**), £

being a small quantity of the order of m. Hence

r = a {1 + £ (J — ^*)}, fi = sin (latitude) = sin I

= a (1 — f e) (1 + £ cos* Z), since £ is small.

This is the equation to a spheroid from the centre, £ being
the ellipticity. The axis-minor coincides with the axis of
revolution of the whole mass. Hence the strata are concen-
tric spheroids, the minor-axes of which coincide with the axis

of revolution of the whole mass.

Prop. To obtain an approximate law of the density of the

strata.

76. By Art. 73 we have the following equation for calcu-

lating the pressure on the stratum of which the radius is a,

neglecting the small term,

p da'
~

3 a
q- 47t

Laplace has integrated this equation on the supposition

that the change in pressure in descending through the strata

varies as the change in the square of the density [MSmoires
de VInstitut, Tom. iii. p. 49^. This law of compression
differs from that of elastic fluids, in which the change in

pressure varies as the change in density. The law us^ by



LAW OP DENSITY OF STRATA. 73

Laplace is it priori more probably true than the law of

compression of elastic fluids, for the greater the density of

tenacious and semi-fluid masses the greater must be the increase

of pressure to produce a given increase of density. See also

some remarks on this subject by Professor Challis in the

Phil. Mag. Vol. xxxvili. The approximate truth of this law
is, however, shown by the accuracy of the results to which it

leads us.

Putting, then, dp = \hd.p^, Tc being a constant,

f 4 = h{p + constant)

;

J Q P 0/(Jt

.'. ha{p + const.) =4tt p'd^dd + 47ra I p'a'dd,
J Q J a

since 0 (o) = 3 / pd^dd. Difierentiate* with respect to o

;

0

^ const.^=47T/5a* +47tJ p'a'dd—47rpd=47rJ p'a'dd',

d^.pa . . 47t ,
.-. + ^.pa =0, putting =

.*. pa= Q sin {qa + P); p = ~ sin {qa -|- B).
a

0 sin 7?

When a — 0, p = ^
B= 0, otherwise p would be

infinite at the centre, which cannot be

;

Q •

p = — sm qa,

Q and q being unknown constants.

* In order to explain how to differentiate a definite integral with respect to a
quantity inroWed in the limits, let ff{s) = F (i) + const.

;

.-. f‘f{i)dx=F(a)~Fiby,

•
• z dS J* -di—/w-
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Prop. To obtain an equation for calculating the ellipticity

of the strata.

77. Substitute s (J — fi*) for F and 6
' — /x*) for in the

e(juation of the last Proposition but one, and we have, after

dividing by J

<f>(a)

3a

1 [''' ^
f '5 j ' a* ,de' , m a^<j>{a)

Divide both sides by a*, and differentiate with respect to a

;

then multiply by a®, and differentiate again, and divide by the

coeflScient of -
7
-
1 ;aa

,

6pa* de
,,

• a "1*
I /

\~ ““
1
1 ^

da^
<f)

(a) da

pa

i{d)

®- = 0
a

This may he put into another form. Multiply by
<f>

(a), then

da

or
^ ® ^

Cor. 1. By putting a = a in tlie first equation of this last

Article, we have the following equation, which we shall find

of use;

.^-,(aV)*' = |aV(a)(.-f)

Prop. To find an expression for the ellipticity of the strata,

with the law of density deduced in the last Proposition hut one.

78. In the equation of last Article put p = -^
sin qa.

Now ^(a) =
3J

p'a'^da’ = 3 $ - cos ja + i sin qa]

.
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Also g = e |2 cos }0 - i sb JO
J

—
and our equation becomes

d^.
<l>

(a) s

d<^
+ q\<f>{a)e=-,<f>{a).e.

To integrate this put ^(a)6 =
^jJ

a
j

dx'dd'-,

2 r,
[“'oVJa'*+ - !“ a'x da'

;

aVo J. aJoda

—If— =
?/. <'/. » * *•' -

dx'da' + ^J
a'
j

a'x'da'*=-0.

Multiply by a* and differentiate

;

a*^ + 2aa: — iax + j*a
j

ax'da! = 0.

Divide by a and differentiate, and then divide by a
;

d^x » ^
^. + j;c.O.

The solution of this is

X + (7j* sin {qa + B) = 0,

G and B being independent of a
;

I
ax'da! = — Cqa cos {qa + B)-\- Csin {qa +B)

;

'

0

If 2 (7

^ (a) 6 = ^ I

(7o“ sin {qa + B) +— a cos {qa + B)

2(7 C (7 . )—^ sin {qa + jB) + — a cos {qa +B)--^ sin {qa + B)^

= Cf
1^1

- sin (ja + .B) +^ cos (?a + .B)|

.
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LAW OF ELLIPTICITY OF STBATA. 77

Put —— = 1 — a to facilitate the calculation
;

tan q&

5m z (g^a* — 3a) _ 5m
2 — gV + 3gVa — g^aV 2

When this is calculated for the surface, we shall he ahle to

find the ellipticity of any stratum we like by the ratio of £ to

€ already found above.

Prop. To prove that the ellipticity of the strata decreases

from the surface towards the centre.

79. We assume that the density of the Earth increases

from the surface to the centre. Let then p = — -Ea"+ ...,

where E is positive : and e=A + Ba” + .... Then

= 1 ^ + ... = 1 — Ha"+ ... ,
H positive.

9 (a) n + 5 B ^

Put these in the differential equation in £ of Art, 77 ;
it

gives

B (to*+ 5m) o““* — QAHdT* + ... = 0.

Neither to nor B can equal zero, because then the second

term of £ only merges into the first. Nor can to = — 5, a nega-

tive quantity. Hence the first term will not vanish of itself.

But we may make the first and second vanish together by
putting n = TO and B{m*-\-5m) =5AH. Hence B must be
positive. And therefore near the centre s increases towards

the surface.

In thus increasing, suppose it attains a maximum, and then
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decreases. At this point ^ = 0 ;
and the equation of Art. 77,

already used, gives

dd
® quantity.

This corresponds to a minimum. Hence e does not attain a
maximum, and therefore it continually increases from the

centre to the surface. In the above we have assxuned that

(f>
(a) is greater than pa’. This appears

*.•
<f>(a) = 3 f p'd*dd = pa* — f a'* da',

and^ is negative by hypothesis.

Prop. To calculate the numerical value of the ellipticity of
the surface in the case of the Earth.

80. In order to do this it is necessary to find the values of

qs. and tan q& at the surface. Let n be the ratio of the density

of the surface to the mean density of the Earth. Now the

mean density

=j
kirp'(Pdd

J
^Ttd^dd =^ | ^

cos ga + ^
sin yaj

;

1

n

.'. tan q& =
3nq&

3n — 2*a*

'

If we take the mean density double of the density at the

surface (see Art. 58), then

, 3q&

which is satisfied by q& = 2’4576 = 140" 45'. Then

tan ya = -0-812, a=4-0266, 2*a* = 6*0398, j*a*-r « = 1‘5.
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Hence by the formula of last Article

f)m 1 m
2-5266 “ 1-U1064

1

292
’

1
since m =—.

If we take the mean density = 2‘4225 x the density of the

surface = 2‘4225 x 2'75 = 6‘66, which accords very nearly with
Mr Airy’s determinatiori from the Harton Experiment [Phil.

Trans, for 1856, p. 355, where it is 6’565), the equation for

finding q& is

tan = q&

1 - 0-8075jV

which is satisfied by ya = 2‘618 = 150®. Then

tan ya = - 0-57735, z = 5-5345, y*a® = 6-8539,

y*a® ^ z = 1-2384, z ^ yV = 0-8075.

In this case

5m 1-4225 _ 5m 1 m
3-7729 “ T" 2-652 “ 1-0608

1

306-6 ’
putting w =—

,

81. In the course of the last eight Articles we have de-

veloped the following conditions, which must be satisfied if

the Earth has derived its present general form from being in

a fluid state. (1) The direction of gravity must everywhere
be perpendicular to the surface. (2) The form of the surface

must be an oblate spheroid, with its axis coincident with the

axis of revolution. (3) An additional test, though not abso-

lutely infallible yet invested with a large degree of probability,

is that furnished by the result of Art. 80, by assuming a law
of density of the strata which is of itself h ^iori very pro-

bably true, that the value of the ellipticity is not very dif-

ferent fi:om 3^. We shall see in a future Chapter that the

actual measurement of the form of the Earth by means of
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80 FIQUBE OP THE EARTH.

trigonometrical operations meets all these conditions. ' It is

found by measurements in .widely separated countries, that an
ellipse of the kind described can be ara^vn in the plane of the
meridian of any place, cutting the plumb-lines at all the
stations where it is examined at right angles

;
and the ellip-

ticity of this ellipse is almost exactly equal to There
are local deviations from this law, arising from local causes,

which are produced by the variations of the surface of the
Earth and probably of the interior of the solid crust also.

But the average line is this ellipse. Since the variations of
the Earth’s surface, in mountains and valleys and extensive

oceans, are palpable, and must have arisen since the Earth
ceased to be fluid and assumed its general form, the fact that

deviations from this ellipse are found in the level-curve while
the average curve is still this ellipse, is rather confirmatory of
the theory of original fluidity than otherwise.

The probability of the truth of the law of density made
use of in the previous calculations is strengthened by the

value of Precession which it leads to.

Prop. To test the law of density used above by the amount

of Precession of the Equinoxes which it leads to.

82. The Annual Precession

G-A
G

Sn
j-f— cos /

n V
1 +

n

n

1 — - Sin*
A

l+v ^
180®,

I = obliquity of the ecliptic = 23® 28' 18", i = inclination of
Moon’s orbit to ecliptic = 5® 8' 50", n and n are the mean
motions of the Earth round its axis and round the Sun, and
their ratio = 365*26, «" the mean motion of the Moon roimd
the Earth = 27*32 days, v = ratio of masses of Earth and
Moon = 75. (See Mechanical Philosophy, Second Edition,

Art. 470*. also, changing the notation, Airy's Trcucts, Fourth
Edition, p. 213, Arts. 36, 38.) Substituting the above quan-
tities,

G— A
Annual Precession = 16225"*6 —7=—

,
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where A and C are the principal moments of inertia of the

mass, the latter about the axis of revolution. To find these

let xyz be the co-ordinates to any element of the mass, rdta

be the polar co-ordinates to the same. Then the mass of this

element = — pi^dfidtodr, p. = cos 6. Also

y’ -I- 2* = r* {1 — (1 — /X*) cos® a)}

[I

a;® + 2* = r® + |1 - (1 - p?) sin® a>|
,

The terras are here arranged as Laplace’s Functions. (See

Art. 39, Ex. 4.)

C— A = f
I f p [(ic® -f-y®) — (^* + z®)} dpdtodr

=fj^fpr* [Q
- P’j - {§

- (1 - cos®
a,|J

dpdcodr.

Now r = radius of any stratum = a |l -|- 6 — /x®j • (Art. 75)

;

f
pr’d. = lj

p^da

= O- (a) -f-^ (a) Q - /a*

j
suppose

;

P. A.
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C-A = ir(a)J j

by Art. 26,

= Tn[r(a)j Q-/**) (l-3/**)c?/i = ^‘«/r(a).

Also C = -r- O' (a), neglecting the small term (a).

O

. , s r* d.a^tj
Now =

=^ sin ^a 2
,
by Arts. 77, 78.

And putting p
— ~ si® S'®*! integrating by parts,

€b

o- (a) = [ pa*da = Q f a* sin gada
V A Jo

^ / a® 3a® . 6a 6 . \
= ^ — cos ^ sm ja +

-^
cos ?a — ^

sin ya

j

_^a*. f„ 6 / 6 \ ya
I_-^smja|3

(^1 jvjtanjar

Hence substituting z, as before,

C-4 2

6’

2 +
(* !»)'

(^-1)

Substituting for g&, z, € and m their values, this is found

to = 0-00313593.

.•. Annual Precession = 16225"*6 x 0‘00313593

= 50"'8.

The value generally assigned to the Precession, from obser-

vation, is 50"T. The almost complete coincidence of the
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result of the theory with this observed value is a remarkable
evidence in favour of the law of density we have adopted.

83. Mr Hopkins has endeavoured to ascertain how far

the interior of the Earth may at present be fluid, by calculating

the value of the Precession upon the supposition of the mass
being a spheroidal shell of heterogeneous matter, enclosing a
heterogeneous fluid mass, consisting of strata increasing ac-

cording to the law we have used. In three memoirs in the

Philosophical Transactions of 1839, 1840, and 1842, he enters

upon a complete investigation of this subject. We will give

the evidence upon which he rests his conclusion that the crust

is very thick.

Prop. To trace the argument draion from Precession to

show that the crust is of considerable thickness.

84. Mr Hopkins has deduced the following formula (in

which we have changed the notation to suit the present

treatise),

where P is the precession of the equinoxes of a homogeneous
spheroid of ellipticity e, which by calculation = 57" nearly

if € = ;
P is the precession of the heterogeneous shell, the

outer and inner ellipticities being e and g : this = 50"’l by
observation.

The success of the calculation depends upon a remarkable
result at which he has andved, that the precession caused by
the disturbing forces in a homogeneous shell filled with homo-
geneous fluid, in which the ellipticities of the inner and outer

surfaces are the same, is the same whatever the thickness of

the shell. It is therefore the same for a spheroid solid to the

centre. The formula above given is tlie relation of the

amounts of precession in two shells, one heterogeneous and
the other homogeneous

;
and, as the thickness is the quantity

sought, neither of these amounts could be calculated, and
therefore the relation expressed in the above formula would

6—2
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be of no avail. But in consequence of the property that the
precession of the shell, when it and the fluid are homogeneous,
IS the same as that of the spheroid, this difficulty is overcome

;

and P can be cjilculated without knowing the thickness, and
therefore P will be known.

We have shown (Art. 79) that the strata decrease in ellip-

ticity in passing downwards : hence e' — 6 is never negative,

and the fraction on the right hand in the above formula is

never negative, and is never so large as unity : let it = p.
Hence

e 7 . 7
- = - — or 6 IS less than - e

;

e o o

and therefore, because the elli])ticity decreases in descending,

the thickness must be grciiter than would correspond with an
ellipticity of the inner surface of the shell equal to 7-8 ths of
that of the outer surface.

If solidification took place solely from pressure, the surfaces

of equal density would be surfaces of equal degrees of solidity.

If we use the formula for finding e in Art. 78, and make
qa. = 150®, and the mean density = 2'4225 times the superficial

7
density (the second of the values in Art. 80), then if e = - e in

3
the formula of Art. 78, we have, after reduction, a = -a, or

the thickness equal to one fourth of the radius, or 1000 miles.

If a smaller ratio of densities is used than 2‘4225, the thickness

is greater. (Mr Hopkins shows also that a ratio a little larger

than 3 makes the thickness 1-5 th of the radius: but this ratio

is too large. Tlie ratio generally used is about 2'2).

But solidification depends upon temperature, as well as

upon pressure. In his third memoir [Phil. Trans. 1842),

Mr Hopkins shows that the isothermal surfaces increase in

ellipticity in passing downwards. If temperature alone re-

gulated the solidification, these surfaces would l>e the surfaces

of equal solidity. But since both pressure and temperature

have their effects, the ellipticities of the •surfaces of equal

solidity must lie between those of the isothermal and the

equi-dense surfaces. Hence the surface of equal solidity at
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THICKNESS OF THE EARTH’S CRUST. 85

any depth will be more elliptic than the surface of equal
density at that depth : and therefore the inner surfiice of the

.7
solid shell, of which the ellipticity is - e, must be at a depth

corresponding to a stratum of equal density of smaller ellip-

7
ticity than - e, that is, at a greater depth than 1000 miles.

In the above reasoning $ has been neglected. If its value

be used, it strengthens the argument for a greater thickness

than 1000 miles. '

We may, therefore, safely conclude that 1000 miles is the

least thickness of the solid crust. In the calculation it has
been assumed that the transition from the solid shell to the

fluid nucleus is abrupt. This will hardly be the case. The
above result will therefore apply to the effective surface, lying

near the really solid shell. But in consequence of the ten-

dency, as shown above, of every cause being to prove that the

crust is really thicker than 1000 miles, we may safely take

this to be its least limit.
I

85. Professors Hennessy and Haughton have both written

upon this subject: see Phil. Trans. 1851, and Transactions of
the Royal Irish Academy, 1852. The first makes the thickness

be between 18 and 600 miles. But in his calculation he
assumes that the shell is so rigid as to resist, without change
of form, the internal pressure which arises from the inner

surface ceasing to be one of fluid equilibrium : an assumption
which cannot be considered admissible. Moreover he sup-

poses that in cooling the outer shell will contract less than

the fluid nucleus
;
which can hardly be true.

Mr Haughton’s investigation is simply a problem of den-
sities, and determines nothing whatever regarding the ratio

of the solid to the fluid parts of the Earth. (See Philosophical

Magazine, Sept. 1860.)

Prop. To show what influence the present aspect of the sur-

face of the Earth has upon the argument for the thickness of
the crust.

*
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86 FIGUEE OF THE EARTH.

86. The following considerations are suflScient to show
that the crust of the Earth must at the present date be very
thick.

The above diagram represents a vertical meridian section

of Hindostan, the Ocean, and the crust of the Earth, through

0, or Cape Comorin. AhcD is the average form of the

mountain mass : AB = 140, BG= 230, Bb= Gc = 2*5 miles

:

mn = t, Ar = t' the thickness of the crust below m (any point

on the table-land) and A : arc AM= a, area of AhmM=K
;

G its centre of gravity, Gg vertical
;
rg = k, perpendicular to

Gg
;
Mm = h‘, h and k the middle points of mn and Ar

; he
perpendicular to mn\ re=y, to he.

The mass Mr is held in equilibrium by its weight, the

downward pressure of the overlying mass MA, the upward
pressure of the fluid below, and the force of adhesion at

the joints mn and Ar. Since the crust has, by hypothesis,

been formed by the solidification of the fluid, its density at

any point will be very much the same as the fluid was at

that point. We will at present assume it to be the same.

Hence the weight of Mr = the upward pressure of the fluid,

and the weight of MbA tends to break the crust, and is sus-

tained by the adhesion at the joints. Let C be the length

of rock, of a unit section, the weight of which equals the

average force of adhesion on a unit of surface. G= l-5th

mile, may be considered to be the greatest limit of G (see

Phil. Trans. 1855, p. 102).

If the point m sink, the joints Ar and mn will open at A
and n, and an opening will take place at some other point on
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THICKNESS OF THE EAETH’S CRUST. 87

the left. The equation of moments of the forces acting on

Mr taken about r is

K. k=-C .t .y + C ,t' .\t'

= C .t[r — \t + h— {r — i) cos a} + .
<'*;

.•. 2iT. i = {t'*+2«'cosa — 1*+2 (rverso + A)f} (7...(l).

Take the case of m being at c, then Tc=rg = 255 miles

:

a = 5® 19', cosa = 0’9957, r vers a = 17*2 miles; take K=Cb
{omitting ABb), this = 230 x 2*5 = 575 square miles

;
A = 2’5

;

.-. «'*+ 2t't

+

39-4< = 1466250 = (1212)* nearly.

If t be very small, <’ = 1212 nearly; this is a condition

which no law of cooling could bring about. ' Also t' cannot

be small, otherwise <* would be negative. If t = t\ then each
is greater than 800 miles.

Formula (1) may be applied to find the least thickness of

the crust beneath S, any point on the Ocean south of Cape
Comorin, to prevent its bed Os being broken up by the lava

from below. Make 0 the centre of moments : Op = t\ sq = t,

OS=a., Ss = — h. Suppose that the depth of the Ocean in-

creases uniformly with the distance from 0, and is 3 miles at

25® distance from 0, i. e. between Madagascar and Australia

;

then A = 14 sin ^a. Also K= area OSs
;
and K. k, the moment

about 0 of the several elementary portions, = 18'7r* sin® by
integration. Hence formula (1) becomes

+ 2tt' cos a — <* + 2 (r vers a— 14 sin ^a) t= 187r® sin* ^a.

If a is so taken, that the coefficient of t may be neglected,

.*. f'* + 2t't cos a — <* = 187r* sin®

As before, neither t nor t' can be small. If t = t' \ then

each = r sin V 93*5 sin = 1000 miles, when a = only 10®.

In this case the coefficient of < = 118, which may be neglected.

Therefore, as before, the thickness must be very great to pre-

vent the crust being broken through.
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88 FIGURE OF THE EARTH.

It has been assumed, that the density of the crust is every-

where the same as the fluid from which it was formed by
solidification. Suppose, however, that it is more dense, then
the tendency of the crust to break, in the first case, will be
greater than we have made it, though the tendency in the

second will be less. The reverse will be the case if the crust

is lighter than the fluid from which it is formed. So that

in any case a fracture must take place somewhere, either

beneath the mountains or beneath the ocean, imless the thick-

ness is very great. As both the mountains and the ocean-

bed retain their positions of elevation and depression, we have
no alternative to choose but that the thickness of the crust is

very great.

87. The result of the whole proves that the crust must be
very thick : and, as Mr Hopkins’s calculation appears to be
free from objection, and in fact to be the only one on which
any reliance can be placed, we may conclude that the thickness

is at least 1000 miles.

The present form of the surface in mountains, table-lands,

continents, and oceans has been, no doubt, acquired from a
process of expansion and contraction which the crust has
undergone during the ages since it was first consolidated.

Geology teaches us that these elevations and depressions of
vast regions are at this present day going on. Wc may,
therefore, fairly conclude—especially with this evidence that

the crust is so thick—that the present varieties of the Earth’s

contour have grown from this cause, and have not arisen in

any way from the operation of hydrostatic principles.

This does not in aiy way contravene the hypothesis that

the Earth was once a fluid mass, and has received its general

figure from that condition. The fact that its mean form, as

measured by geodetic operations, coincides with the fluid-form

calculated upon an assumed, but {h priori) very probable, law
of density, is an unanswerable argument in favour of the hypo-
thesis of original fluidity. And the coincidence of the calcu-

lated amount of Precession, on this law of density, with its

observed amount, is a very strong evidence that that law of

density is the law of nature.
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CHAPTER II.

THE FIGUKE OF THE EAETH, ON THE SOLE HYPOTHESIS
\

OP THE SURFACE BEING A SURFACE OP EQUI-

LIBRIUM AND NEARLY SPHERICAL.

88. Upon the hypothesis of the Earth being a fluid mass
it was shown by Clairaut, in his celebrated work Figure de la

Terre, published in 1743, that the increase of gravity in pass-

ing from the equator to the poles varies as the square ot the

sine of the latitude, and that a certain relation must neces-

sarily subsist between the ellipticity and the amount of

gravity, a relation which has been ever since known as

Clairaut’s Theorem. Laplace demonstrated the same, on the

simpler hypothesis of the surface only being a surface of equi-

librium, and the interior being solid or fluid, but consistmg

of strata nearly spherical. Professor Stokes, in an investiga-

tion published in the Cambridge Philos<yphical Transactions

for 1849, has done the same, without making any assumption

whatever regarding the constitution of the interior of the mass,

but assuming only that the surface is a spheroid of equi-

librium, of small ellipticity. The present Chapter is borrowed
wholly from Mr Stokes’s investigation. Clairaut’s Theorem
is valuable as it gives us the means of determining the ellip-

ticity by means of pendulum oscillations, the times of which
measure the force of gravity at the several stations where
experiments are made.

Prop. To find the law ofi gravity at the surface ofa spher-

roid of equilibrium and ofsmml ellipticity.
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89. Let V be the potenfial of the mass. Then because

the surface is a surface of equilibrium,

const. = V+ ^w* (1 — fi*) r*.

By a process precisely like that in Art. 23 we have, for an
external point.

d\rV d
r —iT5- + j-

dfi.dr*
fj? d(o*

= 0.

Let V be expanded in a series of Laplace’s Functions,

Vg+ V^ + ...+ Vi + ...

Then since the above equation is linear with respect to V,

and a series of Laplace’s Functions cannot equal zero unless

the Functions are separately zero (see Art. 35), we have, by
substituting the above series for V and remembering the con-

dition given by Laplace’s Equation,

d* rV

where and Zi are independent of r. The complete value

of F becomesWWWV=^ + -!^ +^ + ...+Z, + rZ,+ r*Z,+ ...
r r r o i *

Now F evidently vanishes, from its very definition, when r
is infinite. Hence ^^= 0, ^, = 0, ^= 0 ...

TF TF PF

r r r

K the surface were spherical, this expression would be re-

duced to its first term. Hence in our case TF,, TF^ ... must
be all small quantities of the first and higher oraers.
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Substituting this in the equation of equilibrium and putting

r = a|l + € Q -/4*)

we have

“““*•
= X'{- G

- + 1* +5 +-+

5

Equate the sums of Laplace’s Functions of the same order
to zero

;

PTj = a const. — ^ wV, = 0,
o

TFg = 0, TF^ = 0 ...

Let
ff be gravity. Then since the angle between the

radius vector r and the normal varies as the ellipticity and
therefore its cosine must be taken = 1, the value of gravity

dF
is — — the part of the centrifugal force resolved along r

= + 3 {
- i »V) (1 - /*) -»V (I

+ i - /) .

Substituting for r and omitting small quantities of the second

order,

The first portion of this is evidently the mean value of

because if be multiplied by an element of the surface and
integrated throughout, the latter part will dis^pear. Let
the first part be G

;

therefore also w* . a = n» . (r, since m is

small

;

%
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92 FiaUEE OF THE EARTH.

=
(7 |l — (latitude)

j
.

Hence the increase of gravity in passing from the equator

to the poles varies as the square of the sine of the latitude

;

and also

polar gravity — equatorial gravity

equatorial gravity
+ elllpticity

+ e=
5

2
m

- X ratio of centrifugal force at equator to gravity.
A

90. This is Clairaut's Theorem; which is thus demon-
strated by Professor Stokes without making any assumption
regarding the interior of the mass. Nothing can be inferred,

therefore, from any numerical value we may obtain for gravity,

and therefore for the ellipticity, by pendulum experiments,

regarding the Earth’s mass having been originally fluid or

not.

For a valuable and interesting account of pendulum ex-
periments made in places in all latitudes, and the result re-

garding the Figure of the Earth, we must refer the reader to

JMajor General Sabine’s work bn the subject, Account ofEx-
periments to determine the Figure of the Earth hy means of the

Pendulum vibrating Seconds in different Latitudes. London,
1825*. The ellipticity thus deduced is rather greater

than that obtained by the geodetic and other methods. In
consequence of the irregularities of the surface of the Earth
the experiments with pendulums need various corrections

before they can be properly applied to determine the ellip-

ticil^. The principal ones depend upon the elevation of the

station above the sea-level (for which Dr Young gave a formula

of correction, see Phil. Trans, for 1819), and the excess or defect

* See also his latest remarks on the subject in the Notes to his translation

of the Cotmos, Vol. IV. Part i.
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of matter in table-lands or the sea in the neighbourhood of the
station. If the station, for instance, be on a rock in an island in

the midst of a sea, such as St Helena, the correction for this

second disturbing cause will be different from what it w'ould

be for a station at the same elevation from the sea-level in

the midst of a continent. This effect depends, as may be
gathered from Art. 52, not upon the height of the station

above the sea-level, but upon the excess or defect of matter
however arranged. Professor Stokes has fully considered the
influence of these causes of derangement in his Paper above
referred to. He shows, that the effect of these corrections for

the iiTCgularities of the surface, and for the different elevations

and other local circumstances of the stations where the experi-

ments are made, is to reduce the value of the ellipticity, and
make it nearer to 3^.

91. Cor. l. The investigation in the last Proposition

gives, after making substitutions.

E f in A'a*

E being the mass of the Earth. W. is e^^dently equal to the

mass, because as r becomes infinitely great the second terra

vanishes with reference to the first, and we know that in that

case the value of the potential must be the mass divided by
the distance.

92. Cor. 2. Laplace first pointed out that the ellipticity

of the Earth would have an effect upon the Moon’s motion.

The expression in the last Article leads to the following for-

mula for the change in the Moon’s latitude produced by this

cause,

na® / m\ . ^ , ,

where a = distance of Moon, k = mean motion of the node,

n = mean motion, e = the epoch, or longitude when t = Q,

I the obliquity of the ecliptic. (See Mechanical Philosophy,

Second Edition, Art. 556 ;
also, changing the notation, Airy's

Tracts, Fourth Edition, p. 188, Art. 84.) This has been
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94 FIGURE OF THE EARTH.

shown by Bnrg and others to equal — 8" sin {nt + e)
;
also

h = 0"0040217 n. Hence after all reductions

nyi tfjn I

e -_ = 0-0015474, - =— = 0-0017476;
A J Dio

e = 0-0032950 = nearly.

Tliis method, as was the case with the pendulum experi-

ments, only determines the ellipticity, but gives no evidence

on the subject of the original fluidity of the Earth. The near
agreement is remarkable.

93. The spheroidal form of the Earth’s surface and the

circumstance of its being a surface of equilibrium afford us
more information, as Professor Stokes has shown, regarding
the distribution of matter in the interior of the Earth’s mass.

Prop, To show that the centre of the Earth's mass coincides

with the centre of its volume, and that the axis of rotation is one

of the principal axes of the mass, as a consequence of the form
of the surface being a spheroid of equilibrium.

94. By Art. 18 we have the potential of the mass with
reference to an external point {fgh), or

pdxdydz

«

the integrals extending throughout the whole interior of the

Earth. Let pdxdydz =dm, and X, p,, v the direction-cosines of r

the radios vector to {fgh)] then_/=Xr, p = pr, h = vr; and
expanding the radical according to the inverse powers of r,

we get

JJJdm + pS.XJjjxdm + (3X*-1)

f pS.X/t jjjxydm+ ...,

2 denoting the sum of the three expressions necessary to form
a symmetrical function.
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Comparing this with the value of Fin Art. 91,

JJJ
dm = E, and also

jjjxdm = 0
,

jjj^dm = 0
,

jjjsdm = 0 (1),

^
S .

(3\*—
1) JjJ^ j

l^^dm

= (6-l«»)i;a»(l-^*)
(2).

and other equations from the succeeding terms.

Equations (1) show that the centre of gravity of the mass
is at the centre of the spheroid of revolution, or the centre of

the volume.

With regard to equation (2) we may observe that Xfiv are

tied by the relation V + + z/*= 1. If then we insert this for

1 in the equation, so as to make it symmetrical with regard to

\, fi, and V, and equate the several coefficients, we shall

obtain

^ ~

I

~ ^ + SS.X/iJj'jxydm

= (,-!») a.-

which leads to

jjjxt/dm = 0,
jjj^zdm = 0, jjjxzdm = 0 (3),

llJafdm-^ljjr/^dm-lllfz^dm^ Ea^

fIff
dm - Ijjjz^dm - Ijjjx^dm =

|
(e - 1

m) E^^

llf^"dm-^IJIx^dm-^IIJy^dm=-l(^e-^m')Ea’‘

I ...(4).
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Equations (3) show that the co-ordinate axes are principal

axes
;
and tliat tlierefore the axis of revolution is a principal

axis.

The last three equations (4) show, first, that

JJJ
x'dm = Jj

or, as might be anticipated, the moments of inertia about the
axes of X and y, in the plane of the equator, are the same.
They give also if, as before, A and G are the principal

moments,

C— A = Jjj
^dm —jjjz^dm = ^

~ ^

Were we able to deduce C also, without making any hypo-
thesis regarding the internal condition of the earth, the Pre-
cession might be obtained under the same circumstances. In
that case, the agreement between the amount of precession

calculated upon the assumed law of internal density and the
observed value (pointed out in Art. 82) would funiish no
proof of the truth of that law. But as the precession cannot
be thus independently calculated, the result m Art. 82 aflfords

a strong argument for the correctness of the law of internal

density which we have adopted.
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CHAPTER III.

THE FIGURE OP THE EARTH, DETERMINED BY GEODETIC

OPERATIONS.

95. In a previous Chapter we have shown that if the

Earth he considered a fluid mass the form of the surface will

be an oblate spheroid of small ellipticity, its axis coinciding

with the axis of revolution, and the surface being everywhere
at right angles to the direction of gravity

;
and further, that

upon assuming that the density of the strata varies according

to a certain very probable law, the ellipticity = nearly.

In this Chapter we propose to submit this to the test of

measurement, by inquiring whether an ellipse can be found
with its axis coinciding with the axis of the Earth and cutting

the plumb-line at stations along it at right angles
;
and whether

the ellipticity of that ellipse is —5.

The method of doin^ this is as follows. A base-line, about

5 or 6 miles in length, is measured with extreme accuracy, near

the meridian, the curvature of which we are to find. By a
series of triangles this base is connected with a number of

stations in succession lying near the meridian, the angles and
sides of which are calculated or observed, as the case may be.

Thus a connexion is established between the original base and
a second base at the termination of the chain of triangles,

and the length of this second base obtained by calculation.

It is then measured, as the first was, and by a comparison of

the calculated and measured results the correctness or not of

the operations is tested. This having been satisfactorily per-

formed, the projections of the sides of the triangles on the

P. A. *7
*
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98 FIGURE OP THE EARTH,

meridian are found, and their sum gives the length of the
meridian arc between its two extremities. The latitudes of

these extremities are then observed with great care, and from
these data the form of the ellipse, of which the arc is a part, is

found by the principles of conic sections, as we shall now
show.

Prop. To find the length of an arc of meridian in terms of
the amplitvde, the semi-axis major, the ellipticity {the ellipticity

being small), and the middle latitude.

96. Let I and I be the latitudes of the extremities of the
arc, m the mean of these or the middle latitude

;
X. the ampli-

tude of the arc or the difference between the latitudes
;

a, b, and
6 the semi-axes and ellipticity

;
s the length of the arc, r the

radius vector, and d the angle r makes with the major axis.

Then

1 _ cos* 0 sin* 0
tan I

o* cos* l+ b* sin* I
putting & = «(!-.),

r* a* cos*

r = a (1 — e sin* Z)
,
neglecting e*. .

.

^ — 2ae sin Zcos I, ^ = 1 — 2e + 4esin* Z:
dl dl

ds / ,d^ dr^ '

„ , .

= o(l-^e-|ecos 2lj;

.'. s = o 1^1 ~ (^” n f (sin2Z— sin2Z')|

1 3
= 5 (a + J) X — - (a— 5) sin \ cos 2m.

z z
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97. Con. If X be small, not exceeding 12®, we may put
sin X = X in this formula

;
then

8

X
a + b

2
3
a — h

2
cos 2m.

Prop. To obtain formula} for finding the semi-axes and
ellij)ticity, when the lengths, amplitudes, and middle latitudes

of two small arcs are known ; and to ascertain what arcs are
adapted to give the best results.

98. Let s\m, s'Xm' be the lengths, amplitudes, and mid-
dle latitudes

;

8 a + b
' X“ 2

cos 2m,
X'

a+b ^a—b_
2

cos 2m'

;

f

8 S

a-b 1 X~V
2 3 cos 2m' — cos2ot

’

, 7 :rCOs2m' — riCos2i
a + 0 X X

2m

cos 2m' — cos 2m

by which a and b and therefore e are found.

The effect on the axes of any error in the amplitudes will

be found by differentiating the above formulae. In the deno-
minators of the resulting expressions the quantity

cos 2m — cos 2m'

will appear. The errors in the axes consequent on errors in

the observed amplitudes will, therefore, be least when this

quantity is a maximum. Suppose one arc is chosen in the

southern half of the quadrant, cos 2m is positive
;
then

2m'=180®orm' = 90®

will give the best result. Suppose one arc is in the northern

half, cos 2m is negative
;

then 2m' = 0 'will give the best

result. Hence the nearer one arc is to the pole and the other

to the equator, the less will errors in the data affect the calcu-

lated form of the ellipse. This will be illustrated in the fol-

lowing examples.
7—2
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99. Ex. 1. Compare the two parts of the Indian Arc
from Kaliana (lat. 29®. 30'. 48") to Kalianpur (24®. 7 . 11"), the

length being 1961157 feet, and that between Kalianpur and
Damargida (18®. 3'. 15"), the length being 2202926 feet.

X= 5®. 23'. 37"= 19417", \' = 6®. 3'. 56" = 21836",

2m = 53®. 37'. 59", 2m' = 42" . lO' . 26",

^ (« - ^) = 54456, J (a + i) = 20929789 feet,
A It

a = 20984245, * = 20875333, €
1

193

Ex. 2. Compare the two parts of the English Arc
;
viz.

from Saxaford (60°. 49'. 39") to Clifton (53®. 27'. 30"), measuring
2692754 feet, and from Clifton to Southampton (50®. 54'. 47"),

measuring 928774 feet.

X = 7®. 22'. 9" = 26529", X' = 2®. 32'. 43"= 9163",

2m = 114". 17'. 9", 2m' = 104®. 22'. 17",

.-. i (a - *) = 59419, i (a + *) = 20863630,
M A

a = 20923049, 5 = 20804211, € =— .

’ 176

Ex. 3. Compare the arc between Kalianpur and Damar-
gida with that between Clifton and Southampton.

X = 6®.3'.56", X' = 2®.32'.43",

2m = 42®. 10'. 26", 2m' = 104®. 22'. 17",

.-. 1 (a - 5) = 33094, 1 (a + 5) = 20882770,
A M

a = 20915864, 5 = 20849676, e
1_

316'

It will be seen in these examples that when the arcs com-
pared are near each other the resulting ellipticity differs much
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from that deduced by the fluid theory : but when they are

more distant from each other, as in the third example, the
result is far more accordant. If there were no errors in the
data, viz. in the observed amplitudes and measured arcs, the
results ought to come out in complete accordance with each
other, if the figure of the Earth be truly spheroidal

;
for the

formulae are sufficiently exact for this purpose.

Prop. To explain the cause of the ellipses, determinedfrom
the several pairs of arcs, differing fro^n each other.

100. We have assumed, (1) that the meridian arc is an
ellipse, that being the form which it would have were the

Earth fluid
: (2) that the plumb-line at all stations of the

meridian is a normal to this ellipse. These suggest in what
direction we are to look for an explanation of the discrepancies

in the results.

First. It is obvious that the form of equilibrium no longer

actually exists, as all the variety of hill and dale, mountain
and table-land and ocean-surface, sufficiently testifies. Geology
teaches the same more generally and philosophically. Exten-
sive portions now dry land were once at the bottom of the

ocean, receiving the fossil deposits and burying them in the

detritus of rocks, which time wore down, to become, as they
are now, the records of their own history. Changes of level

must therefore have taken place on a large scale. Land-
marks in Scandinavia, the temple of Serapis at Puzzuoli, the

ancient and reeent coral-reefs in the Pacific, as pointed out

by Mr Darwin, all testify that these changes of level are still

slowly going on. It has been suggested, with great pro-

bability, to be caused by the expansion and contraction of

vast portions of rock in the interior of the Earth arising from
variations in temperature produced by chemical changes.

Whatever the cause, the fact is certain. The Earth’s form
can no longer be a form of fluid-equilibrium, although the

average form is so.

Secondly. The plumb-line may not in all cases be per-

pendieular even to tlie mean ellipse. Local attraction is suf-

ficient to produce material errors in the vertical, and therefore

in the amplitudes determined by meridian zenith distances
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of stars. For instance (Art. 56), an error as great as 5" was
discovered at Takal K’hera in Central India by Colonel
Everest, arising from the attraction of a distant table-land.

Sir Henry James has shown that a deflection of about the
same amount occurs at Arthur’s Seat, Edinburgh {Phil. Trans.

1857). We have mentioned that the attraction of the Him-
malaya Mountains produces a deflection amounting to as much
as 28" at the northern extremity of the Great Indian Arc
(Art. 61). We have calculated elsewhere (see Art. 62 and
Phil. Trans, for 1859) that the deficiency of matter in the vast
ocean south of India causes such deflections as 6", 9", 10"*5,

19"’7 at various stations : and (Art. 63), shown that it is not
improbable that extensive but slight variations of density

prevail in the interior of the Earth, the causes of which are

not visible to us as mountain masses and vast oceans are,

sufficient to produce errors in the plumb-line quite as great
as and even greater than most of those already enumerated.
These seem abundantly to account for the variety in the cal-

culated semi-axes and ellipticities in the last Article, derived
as they are from uiicorrected observations.

101. Mr Airy has entered very thoroughly into a com-
parison (see Figure of the Earth, Encyc. Metrop^ of the various

arcs measured in different parts of the world. He has used
them according to their importance and value, as determined
by the circumstances under which they were measured and
observed. His result satisfactorily shows that the ellipticity

of the mean spheroid is about The conditions, therefore,

required for supposing the Earth to have received its present

average form nom having been once in a fluid state, are

altogether satisfactorily fulfilled.

The same result has been obtained by another process, first

used by the late M. Bessel and adopted by Captain A. Clarke,

R. E. in the Volume of i\\& British Ordnance Survey. This
method we shall now explain, first introducing one or two
propositions which we shall require for its application.

Let the form of the meridian line be such, that

p=A + 2B cos 2Z + 2 (7 cos il

Digitized by Google



FORMULAE OBTAINED. 103

is the radius of curvature at a point of whieh the latitude
is 1.

Prop. To prove that if the meridian he an ellipse,

102.
^

Let px'y be the radius of curvature and co-ordinates
to a point in latitude I, in an ellipse,

^2 -I- 1
,

e -1
, e - 1 - -

,

a a

tanZ = -^, =
dy ^ V^dxV’ dx'^’

From these we obtain

X = a cos Z (1 — e* sin* Z)"*,

y' = a sin Z (1 - e*) (1 - e* sin* l)~*,

p' = a (1 — c*) (1 — e* sin* Z)”'.

Expanding this last, neglecting e*....

p = a {I — e*) (1 + 1 e* sin*Z+^ e* sin‘ 1)
A O

' “ - i -1 - (i ^ i •

«

Comparing this with p =A-\- 2B cos 2l-{ 2C cos 4?,
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^

I

103. Cor. The expansions of x and y' are as follows :

—

+ cos3Z+i6‘co»5i|

,

- eV")
^- (r‘- iS'’')

““
ill*' ^ •

Prop. To find an expression fibr measuring the departure

of the curve of the meridianfrom an ellipse at any point, when
the meridian is not elliptical.

104. Let xy be the co-ordinates to anj point of which I is

the latitude, and the radius of curvature as above.

Now cot Z = —^ = cosec* I
dx' " dx* dx'

dx
/. P h -— = p cos Z

;

\

.*. X— {A—B) cosl + \{B—C) cosSl + ^OcosSl,
o 0

y=(A + B)Binl + ^ (B+ C) sin 3Z + ^(7sin bl.
o o

Let a and b be the semi-axes of the curve, whether it be
an ellipse or not. Hence these values of x and y give

a=A-BA^iB-0)+lc=A-iB-lp.
'

h^A + B-l{B + C)+\c=A + lB-^G,

e* = l--, = -
a

8B
8 A ^1 + ,

neglecting B. C &c.

If we put these for a and e* in the expressions for x' and y
in Art. 103, we sliall have the co-ordinates of a point (lati-
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DEVIATION FROM ELLIPTIC FORM. 105

tude Z) in the ellipse constructed upon the same axes as those

of the actual cui-ve. After reduction, we get

>( A n , fl^ 5 B*\ liJ*

. I , n 2 „ 1 S’N . , /I „ 5 B\ iB' .

y = c+-^) sm3i+^-2-8m5i;

® 3i + Icos5^^
,

-y = (O-If)
(^ sin ; + 1

Bin + i sin 5l) .

Let 8s and 8r he the distances between the points (ari/) and
(x'y') measured along the arc of the ellipse and the normal

;

8s =—(« — «') sin Z+ (y—y) cos Z=-^

Sr=(x — x') cosZ+(y — y) sinZ=^

Prop. To obtain a formulafor correcting the amplitude of
an arc, so as to make its measured length accord with a given

curve.

105. Let s be the length of the arc and p the radius of

curvature as before
;
then, by integration,

s = AZ+ .B sin 2?+ ^ (7 sin 4Z + constant.

Let Z— ^6, Z+ ^<^ be the limits of s, Z being the latitude

of the middle point, and <j> the amplitude of the arc

;

s = A(f> + 2B cos 2Z 8in<f>+ C cos 4Z sin
2<f).

Suppose now that x^x^ are the small corrections which must
be applied to the observed latitudes, l — l+ to make
them accord with the measured length s. Then Z— + a;^

and I + ^<f> + »/ and <}> + x^ — a;, must be put instead ot
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l— l + ^(f>,
and A in the above formula. Hence, neg-

lecting the .squares of small quantities,

s =A + jCj) -I- 2B cos 2Z {sin ^ + (a:/ — cos <^}

+ C cos 4Z {sin 2^ + 2 (»/ — ajJ cos 2^}

;

.’. («/ — xj (.4 + 2jBcos ^ cos 2Z)

= s — A<f> — 2B cos 2Z sin ^ — (7 cos 4Z sin
2<f>.

Put .4 + 25 cos ^ cos 2Z = .4 /i

;

.*. — x^ =^ — <f>j/M sin <j) cos 2?—^ sin 2^ cos 4?.

Let
11 / U \

A 2089000 V lOOOoJ

25 1
' V G Z

A “ 200 10000 ’ A
~

10000
’

and the above formula will become

a!j' = jw+aZ7+/9F-|- + x^,

where m, a, B, 7 are functions of the observed latitudes, the

measured length, and numerical quantities onlj.

106. As an example which the student may work out for

himself, the following is selected from the Volume of the

Ordnance Survey.

Station.

Observed

Latitudes.
|

Amplitudes.

Measured

Arcs in feet.

Damargida 18"3' 15"*292

Kalianpur 24 7 11 -262 G® 3'55"*970 2202904-7

Kaliana 29 30 48 -322 11 27 33 -030 4164042-7
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If be the correction for Damargida, then the formula,

when the numbers are substituted, will give these correc-

tions :

For Kalianpur...- 4-063 + 2-1831 U+ 1-6212 V+ 0-4285Z+ x,

,

... Kaliana + 0-365 + 4-1251 U+ 2-7741 V- 0-7213Z+ x^.

Also Sr = -29-01 -1*16 7- 557-07Zfeet.

Prop. To explain the process hy which the mean figure of
the earth is obtained from the observed latitudes and the mea-
sured arcs by the Principle of Least Squares.

107. Suppose that we have a number of equations with
numerical coefficients connecting a number of unicnown quan-
tities, less in number than the equations

;
if the equations are

true, the same values should come out whichever of the equa-
tions we use in the process of elimination. In Physical
Science it often happens that we have a problem of this sort,

in which the numerical coefficients, being obtained from ob-
servations, are not exact, but only approximate. If the cor-

rect values of the unknown quantities were substituted, they
would not exactly satisfy the equations, but small residuary

errors will appear, differing according to the set of equations

we select for elimination. It would seem, therefore, difficult

to determine which of all the results actually obtained is

nearest the truth. The late Professor Gauss discovered the

Principle of Least Sq^uares, which is of eminent service in

such cases of perplexity. The principle is this
;
that those

values of the unknown quantities are nearest the truth which
make the sum of the squares of the errors the least possible.

In using this principle the Differential Calculus will evidently

furnish us with exactly as many equations as there are un-
known quantities

;
and the problem will be solved, with the

nearest approximation to the truth attainable.

In this manner the Mean Figure of the Earth may be de-

termined. In the Volume of the Ordnance Survey eight arcs

in Europe and India, consisting of 66 subordinate portions,

have been used. In each arc the errors in the latitudes of

the principal stations, which divide it into its subordinate

portions, are calculated, as in the last Article, in terms of
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UVZ and the unknown error (as ajJ in one of the terminal

stations, or in any one of the stations chosen as a starting

point. The eight arcs will thus furnish 66 formulae of cor-

rection, (similar to that for x' in Article 105), involving

eleven unknown quantities U, V, Z, Xg, The nearest

values of these are obtained by differentiating the sum of the

squares of these corrections with respect to these unknowns
and equating the results to zero. The process of calculation

is very laborious.

108. In the Ordnance Volume Z7= — 0'6937, F’=1'4838,

^=0’3739; and these make

a = 20927197 feet, b = 20855493,
1

292 ’

and the value of Br in Art. 104 becomes 117‘5 sin® 2? feet,

which shows that the greatest departure from the elliptic

form is in latitude 45®, and equals 117 '5 feet. The correction

of the latitude of Damargida (i.e. the value of x, in Art. 106)

is — 0"'246, and the consequent corrections for Kalianpur and
Kaliana are — 3"‘578 and 1"*643, for the above mean values of

U, V and Z. The above measures determine that curve which
is nearest to the meridian, of all the curves represented by
the general formula in Art. 101. It appears to be veiw

nearly elliptical, bulging out but slightly in the middle
latitudes.

Prop. To explain the process offinding the Ellipse most

nearly representing the observations.

109. The process is precisely similar to that explained

in the last Articles, C being first made equal to 6A,
that the curve may be an ellipse. By Art. 105,

_Z_ = _Af_L+_iLV .

10000 24 V200 looooy
’ " 96 480'

There will be only ten unknown quantities in this case.

The corrections for Kalianpur and Kaliana in terms of x,

,

that for Damargida, are
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ELLIPSE BEST KEPRESENTING THE OBSERVATIONS. 109

- 4"-085 H- 2”-1831 U+ 1"’6203 V+x,,

0-403+ 4-1251 f/’+ 2-7756 F+a^j.

The calculation makes Z7=— 0-3856, F= 1-0620. The
Value of hr is zero when Z is substituted, as of course it

should be. Also a = 20926348, h = 20855233, e =— . Sir
294

Henry James takes as the final result for the mean figure of

the Earth (see his Preface),

a = 20926500, h = 20855400,
1

294'

The corrections for latitude (in the example we have taken
all along) are £C,= 0"-050, for Kalianpur — 3"-156, and for

Kaliana l"-810. These are the quantities by which, according

to the Principle of Least Squares, the observed latitudes must
be altered to make the measured arcs accord with the mean
ellipse above determined.

110. What has gone before leads to the determination of

only the Mean Figure of the Earth. Any one meridian may
possibly diflfer from this mean form owing to local causes, such

as the rising or sinking of the surface from internal expansion
and contraction of the materials of the crust, which may have
taken place since the form ceased to be regulated by the laws of

fluid equilibrium. Indeed the average result even seems to point

out that some such change has occurred. For it appears in

Art. 108, that the calculations in the Ordnance Survey Volume
show, that there is a slight protuberance in the middle lati-

tudes, even in the mean figure of the earth.

If there be any local deviations from the mean figure fur-

ther than this, India seems to present phenomena which
would suggest, that these deviations must exist there if any-
where

;
and in that country an extensive and well-executed

Survey has been carried on, which supplies us with data.

The particular case of the Indian Arc has been used for illus-

tration in the preceding references to the Ordnance Volume,
' because the formulae will now be of use in the following cal-
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110 FIGURE OF THE EARTH.

culatlons. In India there are visible sources of error in the

P
osition of the plumb-line which ought not to be overlooked.

'he mountain-mass on the North, and the ocean on the South
by its deficiency of matter, both tend to give the plumb-line a
deviation northward and through different angles. The author
has approximated to the amount of these deflections, as before

stated m this Treatise. The following are the results he has
obtained. (See Phil. Trans. 1859.)

Deflections at Damargida, Kalianpur and Kaliana are :

—

Caused by the Mountains 6"*79 12"*05 27"*98

Ocean 10 *44 9 *00 G *18

Totals 17 *23 21 -05 34 -16

Errors in the amplitudes ... 3"'82 ... 13"T1.

If these be applied as corrections to the amplitudes in

Ex. 1 of Art. 99, we have \ = 5“. 23'. 37"+ 13"= 5®. 23'. 50",

X'= 6®. 3'. 56" + 4" = 6®. 4'. 0", and the formulas of Art. 98
will give

a =20906792, 5 = 20843795, e = -^,

which is nearer the mean ellipse than the uncorrected data in

Ex. 1 make it.

111. Captain Clarke has suggested the following course.

By the principle of least squares he finds the ellipse which
differs least from the mean ellipse in form, and gives deflec-

tions of the normal from the normal of the mean ellipse most
in accordance with the calculated deflections. This he has

done, taking account of mountain attraction only; the effect

of the ocean on the plumb-line had not then been estimated.

We propose now to go through his calculation, taking account

of both these visible causes of disturbance.

Prop. To determine the ellipse which most nearly accords

with the mean ellipse in form, and at the same time most
nearly meets the anomalies in India arising from mountain
and ocean attraction.
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112. Let Zj, Zj, Zg be the latitudes of Damargida, Kalian-

pur, and Kaliana, corrected to the mean ellipse, so that (see

Art. 109) the observed latitudes are Z, — 0"'05, Z, 4- 3"'16, and
Zg — 1"*81. If, now, taking a general case, Z, + e,, Zg + e,, Zg+Cg

are the latitudes for the three places referred to any other

ellipse, then e, + 0*05, Cg — 3*16, Cg — 1*81 are the corrections

which must be added to the observed latitudes to make them
accord with the new ellipse. Hence by Art. 109,

e, + 0*05 = Xj,

Cg - 3*16 = - 4*085 + 2*1831 U+ 1*6203 F+ x,

,

eg + 1*81 = 0*403 + 4*1251 Z7+ 2*7756 F+ X,.

.*. U=- 0*3856 + l*8500e, - 4*4446Cg + 2*5946eg

,

F= 1*0620 - 3*1098e, + 6*6056eg- 3*4958eg.

Suppose that d^, cZg are the angles of deflection caused

by the mountains and the ocean. Then the ellipse which will

most nearly satisfy the Indian Arc is that which makes

+ (l*8500e, - 4*4446Cg+ 2*5946Cg)*

+ (-3*1098ej+6*6056eg-3*4958eg)*

a minimum. By difierentiation, with respect to e,, Cg, eg, we
obtain three equations, which after transformation become

Cj = 0*82493iZ,+ 0*30087<Zg - 0* 1 2583cZg

,

eg = 0*30086tZ, + 0*34199<Zg+ 0*357 16tZg,

eg = - 0*12584tZg + 0*35715^Zg + 0*76873cZg,

and from these we find

U=- 0*3856 - 0*13760tZ, - 0*03671<Zg+ 0*17432cZg,

F= 1*0620 - 0*13808<Zj + 0*07484£Zg+ 0*06325<Zg.

The values of <Z,, <Zg, <Zg are now to be substituted: they
are 17"*23, 21"*05, 34"*16

;
and they make e, = 16"*25,

eg= 24"*58, eg = 3l"*61; also = 2*4255, F= 2*4189.
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Hence the eiTors in the observed latitudes as aifectcd by
deflection, or ej + 0"-05, c,-3"-l6, e,+ l"-81, are 16"'30,

2l"-42, 33"‘42. These are less than the deflections by the ••

small quantities 0"’93, — 0"’37, 0"‘74.

The values of U and V give the following results :

—

a = 20919988, J = 20846981, 6 =^
113. We have thus obtained three diflferent measures of

the arc in question : viz. I. That derived from a comparison

of the two portions of the arc together, the amplitudes not

being corrected for local attraction
j

II. The same comparison

after tlie amplitudes are corrected for mountain and ocean

attraction
;

III. The ellipse obtained by least squares, which
departs least from the mean ellipse in form and at the same
time gives deviations of its normals from the normals of the

mean ellipse as nearly as possible equal to the calculated

deflections arising from

here gathered together

a

local attraction.

h

The results are

c

Mean Ellipse 20926500 feet, 20855400, (Art. 109),

Arc I. 20984245 >> 20875333, (Art. 99),

Arc II. 20906792 20843795, 3-L, (Art. 110),

Arc III. 20919988 20846981,

Let 8a and Zh be the excess of a and h for each of these

ellipses compared with the mean.

Hence

Arc I.

8a = 10‘93 miles,

88= 3*77 „

Arc n. Arc in.

-3-73,'' -:^ l-23,

- 2 -20
,

- 1
'60.
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Prop. To find the difference in length, and also the dis-

tance at the middle latitude, of two elliptic arcs of small

ellipticity, lying in the plane of the meridian, and having
their extremities in the same points ; the latitudes of those points

being hnown approximately, and the ellipses to which the arcs

belo^ having their oases parallel,

114. Let a and /8 "be the co-ordinates to the centre of the

ellipse, of which a, h, e are the semi-axes and ellipticity,

measured from some fixed point near the centres of the two
ellipses. The squares and products o£ a — b, e, a and will

be neglected. Let s be the length of the elliptic arc between
the stations, I and V the observed (or approximate) latitudes of

the extremities, \ and m the amplitude and middle latitude.

First. We will find the length of the arc. Let c be the

chord, r and 6, r and 6' the polar co-ordinates from the centre

of the ellipse to the extremities of the arc.

.*. c*= r*-l-
r'*— 2rr' cos {6 — &) = 2rr' {1 —cos (0 — ^)} + {r—r')*,

r = a (1 — 6sin‘?), r' = a (1 — e sin'Z').

Also tan 0 = (1 — 2e) tan I, 0 = 1 — €sin2l;

.•. 0 — 0" = X — 2c sin X cos 2m
;

.*. 1 — cos (^— ^) = 1 — cos X — 2e sin*X cos 2m

= 2 sin* i X (1 — 2e (1 -I- cos X) cos 27ra}

;

.•. c* = 4a* sin* ^ X {1 — 2e (1 cos X) cos 2m- e (sin* I + sin*Z')}
z

= 4o*sin*5X[l — e{l + (2-hcosX) cos 2m}];
z

sin i X =^ j^l + 1 6 {I -I- (2 + cos X) cos 2m}
j

;

P.A. •8
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X< c X ^
- = sin"*— + - e {1 + (2 + cos X) cos 2m}

; ^
=.^

2 Zd Z V 4d — C

= sin"* ^
i e {1 + (2 + cos X) cos 2m} tan

^
X.

/ 1 \ 3
Now s = o f 1 — - ej X — - ae sin X cos 2m, by Art. 96,

c 1
= a (2- e) sin"*— + ae {1 + (2 +cos X) cos 2m} tan - X

— - ae sin X cos 2m

= {a + 6) sin"*^ + (a - i)
1
1 + ^

(1 - cos X) cos 2m| tan i X.

Taking the variations, c being constant,

• -1 c a + h cZa
S.= (8»+8J)Ka

+ (So —
S6)

|l + }
(1 — cosX) C03 2m| tan^V

The terms being small we may approximate

;

Ss= (8a + Si) ix-2tan^X.Sa

+ (Sa- Sft) |l +
1

(1 - cos X) cos 2m| tan ^X

= (8a+86) X - tan i x) + (Sa - Zh)
^
tan ix(l-cosX) cos2m.

115. Secondly. The distance between the arcs.

The eq^uation to the local ellipse is

{x-aY (y-^)* _7

.
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a:*+y or r* = a* + 2ax + — 2e (a* — a?)

= a® + 2oa cos 6 + 2a/9 sin 0 — 2a*e sin* 6 ;

r = a + a cos 0+ yS sin 0 — oe sin® 9.

Let R, C, C" be the values of r at the mid-latitude and at

the extremities of the arc

;

R = a + a cos m -)- yS sinw — (a — J) sin® m,

C'= a 4- a cos Z + sin Z — {a— h) sin® I,

C = a+

a

cos I' + 0 sin V — {a — h) sin® Z'.

Multiply by 1, M, and N; add, and make the coefficients of

a and yS vanish

;

cosm + ilf cos Z + 3/" cos Z' = 0, sin«i + ilf sin Z+^sin Z'= 0;

M=

R+MC +NC'

sin (vt — l) 1 1

,

sm (Z — Z) 2 2

= a (1 + ^ — (a — 6) (sin*m +M sin® l + N. sin® Z')

= a (1 + 2M) — ^ (a — Z») {1 — cos 2m + 2lT (1 — cos X cos 2m)}

= ^ (o + Z>) (1 + 2M) + ^ (a — Z>) (1 + 23/cos X) cos 2m

= §(« + ^)
(l-sec^x) (a-&)

^1
— sec

^
X cos X^ cos 2m.

Taking the variations, the distance required, or BR,

= i (So + SA) (l - sec i \)

+ i(So-Si)(l - sec
^
X cos X^ cos 2m.
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116. In order to apply these expressions for Bs and BE to

the arc in question, we must put

X=ll*.27'.ll", 2m = 47*. 34'. 25";

.-. & = 0*0003397 Sa - 0*0010097 85,

BE = 0*0025536 Ba - 0*0075756 85.
%

Substituting the values of Ba and 85, Art. 113,

Arc I. Arc II. Arc III.

Bs = - 0*0000936, 0*0009543, 0*0001977 miles,

8i? = - 0*0006492, 0*0071414, 0*0089798 ...

These quantities are so small as to be practically insensible

:

the largest value of Bs being 1 foot in an arc of 800 miles, and
the largest value of BE being less than 12 yards.

The result is, that the differences which are found to exist,

between the observed amplitudes of arcs and the same ampli-

tudes calculated geodetically, can in no respect be accounted

for by supposing the arcs to be curved differently from the

mean ellipse; because, as the above calculation shows, the

ellipses may differ considerably in form without producing a

sensible effect upon the length of the arc. This conclusion

differs from that come to in the first edition of this work. In
that edition (Art. 104) the distance of one extremity of the

arc from the centre of the ellipse was taken to be the same in

the local and the mean ellipse
;
that is, those ellipses were

supposed to be concentric, which they need not be, and are

seen from the above investigation not to be.

Prop. The differences between the astronomical and geo-

detical amplitudes ofan arc ofmeridian arise solelyfrom heal
attraction, and are an accurate measure of the differences of
heal attraction at the extremities of the arc.

117. The truth of this Proposition appears from the last

Article. But we will establish it further oy ascertaining how
great a departure from the mean ellipse may exist without its

producing even 1" of difference only in the amplitudes, as

measured by the heavens and by the Earth.
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By Art. 116, as 1®= 69‘5 miles,

0-0003397&1 - 0-00100978& = 1" = 0-0193056

;

Ba = 56*8 + 2-978& miles.

The values of Ba and 85 which satisfy this equation and
make the sum of their squares least, are 8a = 5, 85 = — 17

miles. But this variation in 5 is greater even than the whole

compression of the pole, which is only 13 miles, to say nothing

of the value of 8o in addition. It may be safely concluded,

therefore, that no hypothesis regarding the curvature of the

Indian Arc will account for the defect of 3"-791 and the. excess

of 5"'236 in the geodetic measure, which Colonel Everest

found in the two arcs between Kalianpur and Damargida
and between Kaliana and Kalianpur, when compared with

the astronomical latitudes.

There is no other possible cause, but local attraction affect-

ing the plumb-line and level. These errors, therefore, become
the accurate measure of the differences of the resultant local

attraction, arising from causes visible and hidden, at the ex-

tremities of the arc. The effect of the two visible causes, the

mountain-mass and the ocean, taken together is very well

represented (as already explained) by 3"-82 and 13"-li. To
change these to — 3"-79 and 5"*24 (the values obtained by
Colonel Everest from the comparison of the arc with the hea-

vens) we must suppose some invisible cause, counteracting

the effects of both the mountains and the ocean, and dimi-

nishing their combined effect in these two arcs respectively

Jby 3"-82 + 3"-79 or 7"-61 and 13"-11 - 5''-24 or 7"-87. These
quantities are nearly equal, and point to some cause existing

in the crust beneath near the middle of the arc, that is, in

the neighbourhood of Kalianpur. That even a slight excess

of density through a large space around Kaliana is capable of

producing such an effect we have shown in Art. 65. An
endless variety of other hypotheses may be conceived to pro-

duce this result, e. g. a deficiency of density beneath the

mountains, accompanied by a corresponding deficiency south

of Damargida towards Cape Comorin and the ocean. This
double hypothesis is not, however, so simple as the single

hypothesis above given. Whatever may be the facts of the
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case, this is certain, that the difference of the local attractions

in the meridian at Damargida and Kalianpur is 3"*79 south
and the difference at Kalianpur and Kaliana is 5"'24 north.

Prop. To explain what effect local attraction will have upon
the mapping of a country.

118. From what goes before it is clear that although the
elliptic elements of the actual arc between two places may
differ considerably from those of the mean ellipse, no sensible

error will thence arise if we calculate the latitudes geodetically

and with the elements of the mean ellipse.

If however the latitudes are laid down in a map from ob-
servations of the sun or stars they will be erroneous by the
whole amount of deflection of the plumb-line by which the
vertical and horizontab are determined. Thus in the case
before us the deflections are as follows :

—

At Damargida, Kalianpur, Kaliana.

By mountains 6" -79 12"-05 27" -98

„ ocean 10 -44 9 -00 6 -18

„ hidden cause 7 -61 opo - 7 -87

Total deflections 24 -84 21 -05 26 *29

These angles converted into miles, at the rate of 1“ to 69*5,

or 51" *8 to 1 mile, are 0’48, 0’41, 0'51 miles; by which quan-
tities would the stations be wrongly placed on the map. The
relative error is largest in the upper division of the arc, and^

in that case is not more than 1-lOth of a mile
;
but positive

error in each case is about half a mile.

If, then, the principal places are all marked down geodeti-

cally they will be correctly placed on the map, but if other

E
laces are filled in from observations of the sun or any other

eavenly body they will be out of place by the whole of the

error, viz. about half a mile.

Prop. Geodesy furnishes no evidence, in proof or disproof,

of the upheaval or depression of the Earth's surface as sug~

gested hy geologicalphenomena.
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119. It will be observed, that the three arcs, which have
been examined in Arts. 114—116, were compared, not with
the mean ellipse itself, but with an ellipse equal in dimensions

to the mean ellipse and with axes parallel (because the lati-

tudes are measured in all the ellipses from the same or

parallel lines). For this ellipse was so drawn as to pass

through the extremities of the arc
;
and we have no means of

knowing that the mean ellipse passes through those two
points. It may lie above them or below them. We have no
means of ascertaining the position of the centre of the mean
ellipse. The only way of doing this is to make a geodetic

measurement of the whole of one meridian from pole to pole.

Till this is done we have no evidence of any particular arc

lying above or below the mean, i. e. of its having been
elevated or depressed. The greatest geological changes of

level, therefore, are perfectly consistent with all we know by
geodesy of the surface of the Earth.

120. In consequence of the inequalities of the Earth’s sur-

face, levelling operations are all referred to the sea-level
;

that is, to that surface which the sea would form if allowed to

percolate by canals through the continents. The sea is thus

taken as the basis of our measurements
;
and is assumed to

have a spheroidal form. But it is possible that local disturb-

ing forces, arising from attraction, may have the effect of

crowding up the waters in the direction in which the forces

act, so as sensibly to alter the sea-level from the spheroidal

form. This we shall proceed to examine.

Prop. To find the effect of a small horizontal disturbing

•force in changing the Level of the Sea.

121.

Let U be the disturbing force and du an element

of the line u along which it acts. Then Udu must be added
io dV 'va. the equation of fluid equilibrium of Art. 73.

Udu = const, at the surface.

Putting w* = m .E -i-
a.’^ and substituting for V (Art. 91);

^ E f m\ Ea.‘ (1 \ m E

,

constant= - + (^- g j ^ (3 J
+ 2 ^ + j
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When the small force U is neglected, a r = 1 + e

.

Hence, neglecting small quantities of the second order, di-

viding by E, multiplying by a, and transposing.

- = constant + e./i* —
r

Udu = 1 + e./i* —

1 dr

r dO
Now - is the tangent of the angle between r and the

normal, = tan suppose : and the angle through which the

normal is thrown back by the force U

= = S

.

tan = — S ,r
dO

1 a
yy
du

r^E^~dd’

Hence the element ds of the undisturbed meridian line on
the surface of the sea is elevated, on the side towards which
U acts, by the space

ds.dy^=%.U^ds=4 Udu = — du-,
£j au Jij g

.*. whole elevation of the sea-level = - / Udu,
ffJ

integrated between the limits.

122. Ex. 1. The Himmalayas attract places along the

coast of Hindostan with a force varying nearly inversely as

the distance from a line running E.S.E. and W.N.W. through

a point in latitude 33“ and longitude 77® 42', and equal to

^tan7" at 1020 miles distance: (see Phil. Trans. 1855, p. 91,

94; also 1859, p. 793). Find the effect upon the sea-level

between Cape Comorin and Karachi, which are about 1600

and 775 miles horn this line, arising from this cause.

In this case Z7= — ^ tan 7" (1060 -i- «) « is the distance

from the line. We may take the arc for the chord. There-

fore rise of sea-level from this cause

= 1020 tan 7" log, miles — 0*0346 x^ 775 0*414

= 0*025 mile = 132 feet.
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Ex. 2. As the distance from the line increases the force

will vary more as the inverse square. Suppose that to the

distance 1020 miles it varies as the inverse distance, and
beyond that' as the inverse square. For the first we must
integrate as above : thus

inoA 0*119^
0-0346 log,^ =0-0346 ^-^= 0*0095 mile = 50 feet.

® 775 0-434

For the more southern part U= —g tan 7" (1020 i-uf, and
the rise of the level

=1020tan7"(;-|?-i^)=0-0346x|=0-0I254mile=66feel.

The sum of these is 116 feet, and is somewhat less than
the result before obtained. We shall not be above the mark,
therefore, in using the latter.

Ex. 3. If tt be the distance, in linear degrees, of the

parallel of any place on the west coast of Hindostan from that

of Cape Comonn, then the force acting towards the north at

any point of that coast, arising from the deficiency of matter

in the Ocean, may be approximately represented by the follow-

ing formula (see Phil. Trans. 1859)

:

(0-000059556839 -0-000002836162« + 0-000000004072«*) g.

Hence at this place the sea-level is higher than at Cape
Comorin, in consequence of this cause, by

0-000059556839W - 0-000001418081tt* -f- 0-000000001 357w3.

Karachi is about 17® north of Cape Comorin. Hence, from
this cause, the sea is higher at Karachi than at Cape Comorin
by 0-00122 of a linear degree = 0-8489 mile = 448 feet.

Ex. 4. Suppose an attracting force resides in Kalianpur,
sufficient to produce a deflection 7"- 75 at 400 miles’ distance,

and that the force varies inversely as the square of the dis-

tance
; find its effect on the level between Cape Comorin and

Karachi.

p. A. 9
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In this case the force is g tan 7" *75 (400 -r- «)*, u being ex-
pressed in miles

;

rise in level = 160000 tan 7" *75 f
— — —^ = 21 feet,V

and M, being 1125 and 643 miles, the distances of Kalian-
pur from Cape Comorin and Karachi.

Taking the sum of these three causes together, the increase

in height of the sea-level at Karachi above that at Csme
Comorin is 116 + 448 + 21 =585 feet. There may be also

other causes which may increase or decrease this result. But
it serves to illustrate to what extent local attraction may have
an effect upon the standard level to which all heights are

referred.

FINIS.

ERRATA.

Page n, 1. i, for ~ read I

,, 17, 1. 4, intert the powers of e as in Art. 19

„ 51, L 1, o5 imo, for 12 read ai, /or^ read
^

ain-j/S

CAHBBlDOBi.FBINTED BY C. J. CBAT, M.A. AT THB VNITBBBITr FBESS.

Digitized by Google



ftambiirge Cfemtntarg ^ai^malkal Strks

FOR COLLEGES AND SCHOOLS.

I. ARITHMETIC AND ALGEBRA.

ARITHMETIC. For the use of Schools. By BARNARD
SMITH, M.A New Edition (i860). 348 pp. Answers to all the

Questions. Crown 8to. 4*. 6d.

KEY to the above. New Edition. Second Edition, containing

Solutions to eveiy Question in the latest Edition (i860). Crown 8vo.

8s. 6d.

. ARITHMETIC and ALGEBRA in their PRINCIPLES and

APPLICATIONS. With numerous Examples, 83rstematically arranged.

By BABNABD SMITH, M.A. Seventh Edition (i860). 696 pp.

Crown 8vo. los. 6d.

EXERCISES IN ARITHMETIC. By BARNARD SMITH,
M.A. Part I. 48 pp. (i860), is. Part II. 56 pp. (i860), is. Answers. 6d.

Two Parts bound in one. ti. Or with Answers, os. 6d.

ARITHMETIC IN THEORY AND PRACTICE. For Ad-
vanced PupUs. By J. BROOK SMITH, M.A. Part First. 164 pp.

(i860). Crown 8vo. 3s. 6d.

A SHORT MANUAL OF ARITHMETIC. By C. W.
UNDERWOOD, M.A 96 pp. (i860). Fcp. 8vo. *s. 6d.

ALGEBRA. For the use of COLLEGES and SCHOOLS.
By I. TODHUNTER, M.A. SeixAid Edition. Crown 8vo. 516 pp.

(i860). 7s. 6d.

Digitized by Google



ELEMENTARY MATHEMATICAL SERIES.

II. TBIGONOMETRY.

INTRODUCTION to PLANE TRIGONOMETRY. For the

lue of Schools. By J. C. SNOWBALL, M.A. Second EldiUon.

(1847). 8vo. 5*.

PLANE TRIGONOMETRY. For Schools and Colleges. By
I. ITODHUNTER, M.A. Second Edition. 479 pp. (i860). Crown

8vo. 5*.

SPHERICAL TRIGONOMETRY. For COLLEGES and
SCHOOLS. Byl. TODHUNTER, M.A. iupp. (1859). Crown 8vo.

4». 6d.

PLANE TRIGONOMETRY. With a numerons Collection of

Examples. By R. D. BEASLEY, M.A. 106 pp. (1858). Crown 8to.

3«. 6d.

PLANE and SPHERICAL TRIGONOMETRY. With the

Construction and use of Tables of Logarithms. By J. C. SNOWBALL,
M.A. Ninth Edition, ‘240 pp. (1857). Crown 8va 7*. 6d.

in. MECHANICS AND HYDROSTATICS.

ELEMENTARY TREATISE on MECHANICS. With a

Collection of Examples. By S. PARKINSON, B.D. Second Edition.

(1861). Crown 8vo. 9s. 6d.

ELEMENTARY COURSE of MECHANICS and HYDRO-
STATICS. By J. C. SNOWBALL, M.A. Fourth Edition, no pp.
(1851). Crown 8vo. 5*.

ELEMENTARY HYDROSTATICS. With numerous Ex-
amples and Solutions. By J. B. PHEAR, M.A. Second Edition.

156 pp. (1857). Crown 8vo. 5*. 6d.

ELEMENTARY STATICS. For use in the Government
Schools and Colleges in India. By G. RAWLINSON, M.A. ^Edited

by E. STURGES, M.A. 150 pp. (i860). Crown 8vo. 4*. 6d.

Macmillan and Co., Cambridge and London.

Digitized by Google



LIST OF BOOKS
PUBLISHED BT

MACMILLAN AND CO.

CambrtDgc,

AND 23, HENRIETTA STREET, COVENT GARDEN, LONDON.

£SCH7LI Eamenides.
The Greek Text with Engliah Notei, and an Introduction, containing an
Analynis of Mliller’a Dissertations. By BERNARD DRAKE, M.A., late

Fellow of King's College, Cambridge. 8vo. cloth, 7s. 6d.

ADAMS.—The Twelve Foundations and other Poems.
By H. C. ADAMSg M.A.g Author of ** Sivan tho Sleeper,’* &c. Royal 16m0.
cloth, 5i.

AGNES HOPETOUN’S SCHOOLS AND HOLIDAYS.
The Experiences of a Little Girl. A Story for Girls. By Mrs. OLlPHAKTi
Author of ** Margaret Maitland.” Royal 16mo. 6s.

AIRY.—Mathematical Tracts on the Lunar and Planetary
Theories. The Figure of the Earth, Precession and Nutation, the Calculus

of Variations, and the Undulatory Theory of Optics. By G. B. AIRY, M.A.,
Astronomer Royal. Fourth ErUtion, revised andimproved. 8vo. cloth, ISs.

ARISTOTLE on the Vital Principle.
Translated, with Notes. By CHARLES COLLIER, H.D., F.R.S., Fellow

of the Royal College of Physicians. Crown 8vo. cloth, 8s. 6d.

BAXTER.—The Volunteer Movement: its Progress and
Wants. With Tables of all the Volunteer Corps in Great Britain, and of

their Expenses. By R. DUDLEY BAXTER. 8vo. Is.

BEASLEY.—An Elementary Treatise on Plane Trigonometry

:

with a numerous Collection of Examples. By R. D. BEASLEY, M.A., Fellow
of St. John's College, Cambridge, Head-Master of Grantham Grammar School.

Crown 8vo. cloth, Ss. 6d.

BIRKS.—The Difficulties of Belief in connexion with the
Creation and the Fall. By THOMAS RAWSON BIRKS, M.A., Rector of

Kelshall, and ExaimtiHO Chiplaih to ths Loan Bishop op Carlisli,
Author of “ The Life of the Rev. E. Bickersleth." Crown 8vo. cloth, Is. 6S.

BLANCHE LISLE, and Other Poems.
Fcap. 8to. cloth, 4s. 6tl.

10.4.81. A
>,(»0cr.

Digitized by Google



s MACMILLAN A CO.’S PUBLICATIONS

BOOLE.—The Mathematical Analysis of Logic.
By GEORGE BOOLE, D.C.L. Frofeiior of Mathemotici in tbe Queen’*
Univenity, Ireland. 8to. eewcd, is.

BOOLE.—A Treatise on Differential Equations.
Crown 8to. cloth, 14«.

BBAVE* WORDS for BRAVE SOLDIERS and SAILORS.
Tenth Thoueend. 16mo. aewed. Id. ; or 10«. per 100.

BRETT. — Suggestions relative to the Restoration of
Sufilragan Blihopa and Rural Deana. By THOMAS BRETT (a.n. 1711).

Edited by JAMES KENDALL, M.A., Procter in CooTocation for the Clergy
of Ely. Crown 8vo. cloth, 2t. 6d.

BRIMLEY.-Essays, by the late GEORGE BRIMLE7, M.A.
Edited by W. O. CLARK, M.A., Tutor of Trinity College, and Public Orator
in the Unlrenity of Cambridge. With Portrait. Second iBditton.
Feap. 8vo. cloth, ii.

BROOK SMITH.—Arithmetie in Theory and Practice.
For Advanced Foplla. Part FIret. By J. BROOK SMITH, H.A., of St.

John’a College, Cambridge. Crown 8vo. cloth, 3a. 6d.

BUTLER (Archer!.-Sermons, Doctrinal and Practical.
By the Rev. WILLIAM ARCHER BUTLER, M.A. late Profeaaorof Moral
Philoaophy in the XJnlreraity of Dublin. Edited, with a Memoir of the

Author’* Life, by the Very Rev. Thoha* WooDwano, M.A. Dean of Down.
With Portrait. Fifth EdHion. 8vo. cloth, 12a.

BUTLER (Archer).—A Second Series of Sermons.
Edited by J. A. JeeBKiB. D.D. Regin* Profeaaor of Divinity in the Univer-
eity of Cambridge. Third Edition. 8vo. cloth, 10a. 6d.

BUTLER (Archer).-History of Ancient Philosophy.
A Seriea of Lecturea. Edited by William Kepworth TnoMPaoK, M.A.
Regina Profeaaor of Greek in the Univeraity of Cambridge. 2 vola. 8vo.
eloth, If. 6a.

BUTLER (Archer).—Letters on Romanism, in Reply to Mr.
NaWHAa'a Eaaay on Development. Edited by the Very Rev. T. WoonwAnn,
Dean of Down. Second Edition, reviaed by the Yen. Archdeacon Haad-
WICK. 8vo. oloth, lOa. 6d.

CAMBRIDGE. -A Cambridge Scrap Book ; containing in a
Fictoilal Form a Report on the Mannera, Cuatoma, Humouri, and Pastlmea

of the Univeraity of Cambridge. With nearly 800 lUutraiioni. Second
Edition. Croam 4to. half-bound, 7$. Sd.

CAMBRIDGE.—Cambridge Theological Papers. Comprising
thoae given at the Voluntary Theological and Croase Scholarahip Eanmlna-
tiona. Edited, with References and Indicea, by A. P. MOOR, M.A. of Trinity

College, Cambridge, and Sub-warden of St. Auguatine'a College. Canterbury.

Svo. cloth, 7i. 64,

Digitized by Googic



HACMILIAH & CO.’S i'UBUCA'^O^S. S

CAMBRIDGE SENATE-HOUSE PROBLEMS and RIDERS,
with SOLUTIONS
1848—18Sl.-Problemi. By N. M. FERRERS, M.A. and J. B. JACK-

SON. M.A. or Caius College. IS< td.

1848— 1831.—Rideri. By F. J. JAMESON, M.A. of Caiua College.

U 6d.

1884—Pioblemi and Riden. By W. WALTON, M.A. of Trinity College, and
C. F. MACKENZIE, M.A. of Caiue Col-

lege. 10<. 6d.

1837—Problem! and Riden. By W. M. CAMPION, M.A. of Oueen's College,

and W.WALTON, M.A. of TrinltyCoUege.

St ed.

1880—Problema and Rldera. By H. W. WATSON, M.A. Trinity College,

and E. T. ROUTH, M.A. St Peter'e

. College. 7t. td. '

CAMBRIDGE ENGLISH PRIZE POEMS, which have
obtained the Chancellor's Gold Medal from the Inititutloo of the Priie to

1838. Crown 8vo. cloth, 7t. Sd.

CAMBRIDGE.—Cambridge and Dublin MathematicalJoomal.
Tke Ctmphte Workf In Nine Volt. 8vo. cloth, 71. it.

OVLT A WEW COriEt OF THE COMPLETE WOEK ESMAIM ON RANO.

CAMPBELL.—The Nature of the Atonement and its Rela-
tion to Remission of Bine and Eternal Life. By JOHN M*LEOD
CAMPBELL, formerly Minister of Row. 8ro. cloth, Ids. Id.

CICERO.—Old Age and Friendship.
TranslEted into English. TwoPatU. limo. sewed, each.

COLENSO.—The Colony of Natal. A Journal of Ten Weeks’
Tour of Visitation among the Colonists and Zola KaSrs of Natal. By the

Right Rct. JOHN WILLIAM COLENSO, D.D. Lord Bishop of Natal,

with a Map and Illnstrations. Fcap. 8ro. cloth, 5s,

COLENSO.—Village Sermons.
Second Edition. Fcap. 8eo. cloth, 2s. Id.

COLENSO.—Four Sermons on Ordination, and on Missions.
18mo. sawed. Is.

COLENSO.—Companion to the Holy Communion, containing
the Service, and Select Readings from the writings of Mr. MAURICE.
Edited by the Lord Bishop of Natal. Fine Edition, rubricated and bound in

morocco, antique style, 6s.; or In cloth, 2s. Id. Common Paper,Ump cloth, Is.

COOPER-The Nature of Reprobation, and the Preacher’s
Lltblllty to it. A Sermon. By J. E. COOPER, M.A., Rector of Fomcet
St. Mary, Norfolk, 8vo. Is.

COTTON.—Sermons smd Addresses delivered in Marlborongh
College during Six Years by GEORGE EDWARD LYNCH COTTON, D.D.,
Lord Bishop of Calcutta, and Metropolitan of India. Crown 8vo. cloth, lOs.M

.

COTTON.—Sermons : chiefly connected with Public Events
of 1834. Fcap. 8 to. cloth, Ss.

COTTON.—Charge delivered at his Primary Visitation,
Septambcr 1889. 8ve. 2s. M,

AS

Digitized by Google



4' MACMILLAN & CO.*S PUBLICATIONS.

CROSSE.—An Analysis of Paley’s Evidences.
By C H. CROSSE. M.A. of Caius College, Cambridge. l2mo. boards, Zs. 6d.

DAVIES.—St. Paul and Modem Thought

:

Remarks on some of the Views advanced in Professor Jovrett'a Commentary
on St. Paul. By Rev. J. I-L. DAVIES, M.A. Fellow of Trinity College, Cam-
bridge, and Rector of Chr^t Church, Marylebone. 8vo. sewed, 2». 6d.

OATS OF OLD: Stories from Old English History of the
Druids, the Anglo>Saxons, and the Crusades. By the Author of *‘Ruth and
her Friends.’* Imp. 16mo. cloth, 5s.

DEMOSTHENES DE CORONA.
The Greek Text with English Notes. By B. DRAKE, M.A. late Fellow of

King’s College, Cambridge. Second Edition, to which is prehxed

AESCHINES AGAINST CTESIPHON, with English Notes. Fcap. Sto.

cloth, 5s.

DEMOSTHENES.—Demosthenes on the Crown.
Translated by J. P. NOURIS, M.A. Fellow of Trinity College, Cambridge,
and one of Her Majesty’s Inspectors of Schools. Crown 8vo. cloth, 3s«

DREW.—A Geometrical Treatise on Conic Sections, with
Copious Examples from the Cambridge Senate House Papers. By W. H.
DREW, M.A. of St. John's College, Cambridge. Second Master of Black-

heath Proprietary School. Crown 8vo. cloth, is. (>d.

FARRAR.—Lyrics of Life.
By FREDERIC W. FARRAR, Fellow of Trinity College, Cambridge.
Author of Eric,” iic. Fcap. 8vo. cloth, it. 6d.

FISHER.—The Goth and the Saracen: a Comparison
Iclvreen tbe Historical Effect produced upon the Condition of Mankind by
the Mahoinetau Conquests and those of tlie Northern Barbarians. By £. H.
FISHER, B.A. Scholar of Trinity College, Cambridge. Crown 8vo. Is. 6d.

FORD.—Steps to the Sanctuary
; or, the Order for Morning

Prayer, set forth and explained in Verse. By JAMES FORD, M.A., Pre-

bendary of Exeter Cathedral. Crown 8vo. cloth, 2s. Cd.

FROST.—The First Three Sections of Newton’s Principia.
With Notes and Problems in illustration of the subject. By PEIICIVAL
FROST, M.A. late Fellow of St. John's College, Cambridge, and Mathe-
matical Lecturer of Jesus College. Crown 8vo. cloth, 10s. 6d.

GILL.—The Anniversaries. Poems in Commemoration of
Great Men and Great Events. By X. H. GILL. Fcap. 8vo. cloth, 5s.

GODFRAY.—An Elementary Treatise on the Lunar Theory.
With a briefSketch of the History of the Problem up to tbe time of Newton.
By HUGH GODFKAV, M.A. of St. John’s College, Esquire Bedell in the
University of Cambridge. 8vo. cloth, 5s. 6tf.

GRANT.—Plane Astronomy.
including Explanation, of Celealial Phenomena, and Deacriptiona of Aationo-
mlcal Inatrumenla. By A. R. GRANT, M.A. , one of Her MaJ.aty’t lu-

5i>c;tors of Schoola, late Fellova of TrioityCollege, Cambridge. Hvo.bouda, 6a,

Digitized by Coogle



MACMILLAN i CO.’S PUBLICATIONS. 5

HAMILTON.—On Truth and Error : Thoughts, in Prose and
Verse, on the Principles of Truth, and the Causes and Effects of Error.

By JOHN HAMILTON, Esq. (of St. Ernan's), M.A. St. John’s College, Cam-
bridge. Crown 8vo. cloth, 5s.

HARE.—Charges delivered during the Years 1840 to 1854.
With Notes on the Principal Events affecting the Church during that period.

ByJUMUS CHARLES HARE, M.A. sometime Archdeacon of Lewes, and
Chaplain In Ordinary to the Queen. With an Tnirodurtion, explanatory

of his position in the Church with reference to the parties which divide it.

3 Tols. 8vo. cloth, W. 11s. fit/.

HARE.—Miscellaneons Pamphlets on some of the Leading
'

Questions agitated in the Church during the Years 1845—51. 8vo. cloth, 12s.

HARE.—The Victory of Faith.
Second Edition. 8vft. cloth, s,.

HARE.—The Mission of the Comforter.
Second Edition. With Notes. 8ro. cloth, 12,.

HARE.—Vindication of Luther from his English Assailants.
Second Edition. 6vo. cloth, 7,.

HARE.—Parish Sermons.
Second Series. 8vo. cloth. 12s.

HARE.—Sermons Preacht on Particular Occasions.
8vo. cloth, 12s.

The two following Boohs are included in the Three Volumes of Charges, and
may still be had separately.

HARE.—The Contest with Rome.
With Notes, especially in answer to Dr. Newman’s Lectures on Present Position

of Catholics. Second Edition. Svo. cloth, lOx. 6/f.

HARE.—Charges delivered in the Years 1843, 1845, 1846.
Never before published. With an Introductirn, explanatory of his position

In the Church with reference to the parties which divide it. 6*. 6d.

HARE.—Portions of the Psalms in English Verse.
Selected for Public Worship, )8rao. cloth, 2s. 6d,

HARE.—Two Sermons preached in Herstmoncenx Church,
on Septuagesima Sunday, 1855, being the Sunday after the Funeral of the

Venerable Archdeacon Hare. By the Rev. H. VENN ELLIOTT, Perpetual

Curate of St. Mary's, Brighton, late Fellow of Trinltj College. Cambridge,
and the Rev. J. N. SIMPKINSON, Rector of Brington, Northampton,
formerly Curate of Herstmonceux. 8vo. Is. 6<f.

HARDWICK.—Christ and other Masters.
A Hldtotir.l Inquiry into some of the chief Parallelism, and Contrasts

between Christianity and the Reliftious Systems of the Ancient World. With
special reference to prevailing Difliculties and Objections. By the Ven.

ARCHDEACON HARDWICK. Part f. IsTRonocTio.s. Part II. Th*
RZI.IOIONS nr Imuia. Port III. The Reltgions op Chiha, Amekica
AHD OcEAHiCA. Part IV. Reiioioss OF PoTPT AND Medo-Pehsia. 8to.

cloth. 7,. 8d. each part.

Digitized by Google



G MACMII.LAK & CO.’S PUBUCATIOIIS.

HARDWICK.—A History of the Christian Church, during
the Middle Ages and the Reformation. (A.D. 590-1600.)
By Archdeacon Hardwick. Two voU. crown 8vo. cloth, 2U.

Vol. I. History from Gregory the Great to the Excommunication of Luther.

With Mapa.

Vol. II. History of the Bcformation of the Church.

Each eolnme may be had separately. Price 10#. Od.

These Volumes form part of the Series of Theological Manuals.

HARDWICK.—Twenty Sermons for Town Congregations.
Crown 8to. cloth, 6«. 6d.

HAYNES. -Outlines of Equity. By FREEMAN OLIVER
HAYNES, BorrI,ter-at-Law, late Fellow of Catua College, Cambridge.

Crown 8to. cloth, lOi.

HEDDERWICK.—Lays of Middle Age, and other Poems.
By JAMES HEDDEHWICK. Fcp. 8vo. St.

HEMMING.—An Elementary Treatise on the Differential
and Integral Calculus. By G. W. HEMMING. M.A. Fellow of St. John’s

College, Cambridge. Second Edition. 8vo. cloth, 9i.

HERVET,—The Genealogies of onr Lord and Saviour Jesns
Christ, a« contained in the Gospels of St. Matthew and St. Luke, reconciled

with each other and with the Genealogy of the House of David, from Adam to

the close of the Canon of the Old Testament, and shown to be in harmony with

the true Chronology of the Times. By Lord ARTHUR HERVEY, M.A.
Rector of Ickworth. 8vo. cloth, 10«. 6d.

HERVEY.—The Inspiration of Holy Scripture.
Five Sermons preached before the University of Cambridge. 8vo. cloth, St. 6(f-

HOWARD.—The Pentateuch
;
or, the Five Books of Moses.

Translated into English from the Version of the LXX. With Notes on ita

Omlasions and Insertions, and also on the Passages in which it differs from
the Authorised Version. By the Hon. HENRY HOWARD, D.D. Dean of

Lichfield. Crown 8vo. cloth. Genesis, 1 vol. 8s. 6d. ;
Exontrs andLeti*

Ticus, 1 vol. 10«. 6(/.; Numbers and Deutebonomt, I vol. 10s. 6d.

HUMPHRY.—The Human Skeleton (including the Joints).

By GEORG^ MURRAY HU.VIPHRY, M.D. F.R.S., Surgeon to

Addenbrooke's Hospital, Lecturer on Surgery and Anatomy lu the Cambridge
University Medical Subool. With Two Hundred and Sixty Illustrations

drawn Nature. Medium Svo. cloth, 1/. 8*.

HUMPHRY.—On the Coagu’ation of the Blood in the Venous
System during Life. 8vo. 2«. Cd.

INGLEBY.—Outlines of Theoretical Logic.
Founded on the New Analytic of Sir IVh-liam Hamilton. Designed for a

.Text-book in Schools and Colleges, liy C. MANSFIELD INGLEBY, M.A.,
of Trinity College, Cambridge. lu fcap. Svo. clotli, 3«. 6d.
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JAMESON.—Analogy between the Miracles and Doctrines
of Scripture. Bp F. J. JAMESOK, M.A., Fellorr of St. Catharine’s College,

Cambridge. Fcap. 8vo. cloth, 2t.

JAMESON.—Brotherly Connsels to Students. Fonr Sermons
preached in the Chapel of St. Catharine's College, Cambridge, By F, J,

JAMESON, H.A. Fcap. Sto. limp cloth, red edges. Is. fid.
'

JUVENAL.—Jnvenal, for Schools.
With English Notes. By J. E. B. MAYOK, M.A. Fellow and Assistant

'

Tutor of St. John’s College, Cambridge. Crown Sto. cloth, lOs. fid.

KINGSLEY.—Two Years Ago.
By CHARLES KINGSLEY* F.S.A. Rector of Eversley, and Chaplain in Ordi-

nary to the Queen. Second Bdition. S vole, crown 8vo. clo^ U. lU. 6d.

KINGSLEY.—" Westward Ho !” or, the Voyages and Adven*
tures of Sir Amyas Leigh, Knight of Burrough, in the County of Devon, in

the Reign of Her Most Glorious Majesty Queen Elisabeth. New and
Chenper Edition. Crown fivo. cloth, 6s.

KINGSLEY.—Glaucus
;

or, the Wonders of the Shore.
Mew uid lUnstrated Edition, corrected and enlarged. Containing

beautifully Coloured Illustrations of the Objects mentioned in the Work.
Elegantly bound in cloth, with gilt leavei. 7s. fid.

KINGSLEY.—The Heroes: or, Greek Fairy Tales for my
Children. With Eight Illustrations, Engraved by WnTuraa. New
Edition, printed on toned paper, and elegantly bound in cloth, with gilt

leaves. Imp. Ifimo. Ss.
'

KINGSLEY.—Alexandria and Her Schools: being Four Lee*
tuies delivered at the Philosophical Institution, Edinburgh. With a Preface

Crown tivo. cloth, it.

KINGSLEY.—Phaethon; or Loose Thoughts for Loose
Thinters. Third Edition. Crown fivo. boards, 2s,

KINGSLEY.—The Becollections of Geofiry Hamlra-
By HENRY KINGSLEY, Esq. 3 Vols. 11. 11s. fid.

LATHAM.—The Constmetion of Wrought -Iron Bridges,
embracing the Practical Application of the ' Principles of Mechanics to

'Wrought-Iron Girder Work. By J. H. LATHAM, Esq. Civil Engineer. 8vo.

cloth. With numerous detail Plates. 15«.

LECTURES TO LADIES ON PRACTICAL SUBJECTS.
Third Edition, revised. Crown fivo. cloth, 7s. fid. By Reverends F. D.
MAURICE. CHARLES KINGSLEY, J. Lt. DAVIES, ARCHDEACON
ALLEN, DEAN TRENCH, PROFESSOR BREWER, DR. GEORGE
JOHNSON, DR. SIEVEKING, DR. CHAMBERS, F. J. STEPHEN, Esq.,

and TOM TAYLOR, Esq.
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LITTLE ESTELLA, and other TALES FOR THE
YOUNG. With Frontispiece. Rojrai 16mo. extra cloth, gilt leaves, Sr.

LUDLOW.—British India; its Races, and its History,
down to 1857. By JOHN MALCOLM LUDLOW, Barrister-at-Law. 2 vols.

reap. 8ro. cloth, 9s.

LUSHINGTON.—La Nation Boutiqni6re: and other Poems,
chiefly Political. With a Preflice. By the late HENRY LUSHINGTON,
Chief Secretary to the Government of Malta. Points Of War. By
FRANKLIN LUSHINGTON, Judge in the Supreme Courts of the Ionian

Isles. In 1 voi. fcap. Svo. cloth, Ss.
I

LUSHINGTON.—The Italian War 1848-9, and the Last
Italian Poet. By the late HENRY LUSHINGTON, Chief Secretary to the

Government of Matts. With a Biographical Preface by G. S. Vxkables.
Crown Svo. cloth, 6s. Sd.

MACKENZIE.—The Christian Clergy of the first Ten Cen-
turies, and their Influence on European Civilization. By HENRY
MACKENZIE, B.A. Scholar of Trinity College, Cambridge. Crown Svo.

cloth, 6s. 6d.

MANSFIELD.—Paraguay, Brazil, and the Plate.
With a Map, and numerous Woodcuts. By CHARLES MANSFIELD, M.A.
of Clare College, Cambridge. With a Sketch of his Life. By the Rev.
CHARLES KINGSLEY. Crown Svo. cloth, 12s. 6d.

M'COY.—Contributions to British Palseontology; or. First De-
scriptions of several hundred Fossil Radiata, Articulata, Mollusca.aud Pisces,

(Irom the Tertiary, Cretaceous, Oolitic, and Palaeozoic Strata of Great Britain.

With numerous Woodcuts. By Frederick McCot, F.G.S., Frofessor of
Natural History in the University of Melbourne. Svo. cloth, 9s.

MASSON.—Essays, Biographical and Critical; chiefly on the
English Poets. By DAVID MASSON, M.A. Professor of English

Literature in University College, London. Svo. cloth, 12s. 6d. ^

MASSON,—British Novelists and their Styles ;
being a

Critical Sketch ofthe History of British Prose Fiction. By DAVID MASSON,
M.A. Crown Svo. cloth, 7#. 6d.

MASSON.—Life of John Milton, narrated in Connexion
with the Political, Ecclesiastica], and Literary History of hii Time. Vol. I.

with Portraits. IBs.

MAURICE.—Expository Works on the Holy Scriptures.
By FREDERICK DENISON MAURICE, M.A., Chaplain of Lincoln’s Inn.

I-—The Patriarchs and Lawgivers ofthe Old Testament.
Second Edition. Crown Svo. cloth, Gi.

ThUvoIume contains Discourses on the Pentateuch, Joshua, Judges,
and the beginning of the First Book of Samuel.
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MATJEICE.—Expository Works on the Holy Scriptures.
By FREDERICK DENISON MAURICE, M.A., Chaplain of Lincoln’s Inn.

II.—The Prophets and Kings of the Old Testament.
Second Edition. Crown 8vo. cloth, lOi. Cd.

This volume contains Discourses on Samuel I. and II., Kings I. and II.,

Amos, Joel, Hos?a, Isaiah, Micah, Nahum, Habakkuk, Jeremiah,

and Ezekiels

III.—The Gospel of St. John
; a Series of Discourses.

Second edition. Crown 8vo. cloth, 10>. 6rf.

IV.—The Epistles of St. John
;
a Series of Lectures on

Christian Ethics. Crown 8vo. cloth, 7/. 6d,

MAURICE.—Expository Works on the Prayer-Book.

I.—The Ordinary Services.

Second Edition. Fcap. 8to. cloth, Si. 6d.

II.—The Church a Family. Twelve Sermons on the
Oecasional Services. Fcap. 8vo. cloth, it, Gd,

MAURICE.—What is Revelation 1 A Series of Sermons
on the Epiphany ; to which are added Letters to a Theological Student on the
Bampton Lectures of Mr. Maniel. Crown 8vo. cloth, lOi. 6d,

MAURICE.—Sequel to the Inquiry, “What is Revelation?”
Letters In Reply to Mr. Mansel’s Examination of " Stricturea on the
Bampton Lectures.” Crown Svo. cloth, 6«.

MAURICE.—Lectures on Ecclesiastical History.
8to. cloth, IDs. 6d.

MAURICE.—Theological Essays.
Second Edition, with a new Preface and other additions. Crown 8to.

cloth, lOt. 6d.

MAURICE.-The Doctrine of Sacrifice deduced from the
Scriptures. With a Dedicatory Letter to the Young Men's Christian Associa*

tion. Crown Svo. cloth, 7t, 6d,

MAURICE.—The Religions of the World, and their Relations
to Christianity, Third Edition. Fcap. Svo. cloth, 5>.

MAURICE.—On the Lord’s Prayer.
Third Edition. Fcap. Svo. cloth, 2<. Cd.

MAURICE.—On the Sabbath Day: the Character of the
Warrior; and on the Interpretatioit of History. Fcap. Svo. cloth, 2j. 6d.

MAURICE.—Learning and Working.—Six Lectures on the
Foundation of Colleges for Working Men, delivered in Willis's Rooms,
London, in June and July, ISSi. Crown Svo. cloth, i,.
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MAURICE.—The Indian Crisis. Five Sermons.
Crown 8to. cloth, 2<. td.

MAURICE.—Law’s Remarks on the Fable of the Bees.
Edited, with an Introduction of Eighty Paget, by FREDERICK DENISON
MAURICE, M.A. Chaplain of Lineoln’i Inn. Fcp. 8to. cloth, dt. 6d.

MAURICE.—Miscellaneous Pamphlets:-

I.—Eternal Life and Eternal Death.
Crown 8vo. tewed. It. 6d.

II.—Death and Life. A Sermon. Jn #icmoii«m e. b. «i.

8vo. tewed. It,

III.—Flan of a Female College for the Help of the Rich
and of the Poor. 8vo. 6d.

IV.—Administrative Reform.
Crown 8vo. 3d.

V.—The Word “Eternal,” and the Punishment of the
Wicked. Fifth Thousand. 8vo. It.

VL—The Name “Protestant: ” and the English Bishopric
at Jeruiialem. Second Edition. 8vo. St.

VII.—Thoughts on the Oxford Election of 1847.
8vo. It.

VIII.—The Case of Queen’s College, London.
8vo. 1#. ^

IX.—The Worship of the Church a Witness for the
Redumption of the World. 8vo. sewed. It.

MAYOR.—Cambridge in the Seventeenth Century.
2 vola. fcap. 8vo. cloth, 13«.

Vol. I. Livea of Nicholas Ferrar.

Vol. II. Autobiography of Matthew Robinson.
By JOHN E. B. MAYOR, M.A. Fellow and Assistant Tutor of 8t. John's
College, Cambridge.

*•* The Autobiography of Matthew Robinson may be had separately, price 5#. 6d.

MAYOR.—Early Statutes of St. John’s College, Cambridge.
Now first edited with Notes. Royal 8vo. I8i.

The First Part U now ready for delivery.

MAXWELL.—The Stability of the Motion of Saturn’s Rings.
By J. C. MAXWELL, M.A. Professor of Natural Philosophy in the Uni-
versity of Aberdeen. 4to. sewed, 6s.*

MOORE.—A New Proof of the Method of Algebra commonly
called “Greatest Common Measure." By B. T. MOORE, B.A., Fellow of

Pembroke College, Cambridge. Crown 8to. 6d.
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MORGAN.—A Collection of Mathematical Problems and
Example!. Arranged in the DlfTerent Subject! progreeaiveljr, with An!wer!
to all the Queitiona. Bjr H. A. MORGAN, M.A., *FelIow of Jeeua Col-

lege. Crown 8vo. cloth, 6>. ed.

MORSE.—Working for God, and other Practical Sermons.
B; FRANCIS MORSE, M.A. Incumbent of St. John'!, I.adjrwood, Bir-

mingham. Second Edition. Fcap. 8vo. cloth, it.

NAPIER.—Lord Bacon and Sir Walter Raleigh.
Critical and Biographical Ensays. By MACVEY NAPIER* late Editor

of the Sdinburgh B»v{tw and of the Bnejfclop4Bdia Britamiica, Post 8vo*

cloth, 7«. fid.

NORWAY AND SWEDEN.-A Long Vacation Ramble in
1888. By X and Y. Crown Sro. cloth, S«. 6d.

OCCASIONAL PAPERS on UNIVERSITY and SCHOOL
MATTERS; containing an Account of all recent University Subjects and
Changes. Three Parts are now ready, price Is. each.

PARKINSON.—A Treatise on Elementary Mechanics.
For the Use of the Junior Classes at the University, and the Higher Classes in

Schools. With a Collection of Examples. By S. PARKINSON, B.D. Fellow

and AssistantTutor of St. John's College, Cambridge. Crown 8vo. cloth, 9t. fid

PARONSON—A Treatise on Optics.
Ciown 8vo. cloth, 10«. fid.

PARMINTER.—Materials for a Grammar of the Modern
English Language. De.igned ai a Text-book of Claa.ical Grammar for the

use of Training Colleges, and the Higher Classes of English Schools. By
GEORGE HENRY PARMINTER, of Trinity College, Cambridge; Rector
of the United Parishes of ES. John and George, Exeter. Fcap. 8vo. cloth, 3>. 6d.

PEROWNE.-“ Al-Adjrumueh."
An Elementary Arabic Grammar. By J. J. S. PEROWNE, B.D. Lecturer
in Divinity in King's Coliege, London, and Exsmluing Chaplain to the

. Lord Bishop of Norwich. 8vo. cloth. Si.

PHEAR.—Elementary Hydrostatics.
By J. B. Phear, M.A. Fellow of Clare College, Cambridge. Second
Edition. Accompanied by numerous Examples, with the Solutions.

Crown 6vo. cloth, 5#. fid.

PHILOLOGY.—The Journal of Sacred and Classical Philology.
Tols. 1 to IV. 8vo. cloth, I2>. 6d. each.

PLAIN RULES ON REGISTRATION OF BIRTHS AND
DEATHS. Crown 8vo. sewed. Id. ; 9d. per dozen

; 5«. per 100.

PLATO.—The Republic of Plato.
Translated into English, with Notes. By Two Fellows of Trinity College,

Cambridge, (J. Li. Davies M.A., and D. J. Vaughan, M.A.) Second
Sditlon. Bvo. cloth, I0<. 6d.

Digitized by Google



n MACMILLAN & CO.’S PUBLICATIONS,

PRAYERS FOR WORKING MEN OF ALL RANKS:
Earnestly designed for Family Devotion and Private Meditation and Prayer.

Fcap. 8vo. cloth, red leaves, 2>. 6d. Common Edition, U. ad.

PRINCIPLES of ETHICS according to the NEW TESTA-
MENT. Crown 8vo. sewed* 2s.

PROCTER.—A History of the Book of Common Prayer: with
a Rationale of its Offices. By FRANCIS PROCTER, M. A., Vicar of Witton.
Norfolk, and late Fellow of St. Catherine's College. Fourtb Edition,
revised and enlarged. Crown 8vo. cloth, lOi. 6d.

This forms part of the Series of Theological Manuals.

PUCKLE —An Elementary Treatise on Conic Sections and
Algebraic Geometry. With a numerous collection of Easy Examples pro-

gressively arranged, especially designed for the use of Schools and Beginners.
By G. HALE PUCKLE, M. A., Principal of Windermere College. Second
Edition, enlarged and improved. Crown 8vo. cloth. 7>. 6d.

RAMSAY—The Catechiser’s Manual; or, the Church Cate-
chlitm illustrated and explained, for the use of Clergymen, Schoolmasters,

'and Teachers. By ARTHUR RAMSAY, M.A. of Trinity College,

Cambridge. 18mo. cloth, 6d«

REICHEL.—The Lord’s Prayer and other Sermons.
By C. P. REICHEL, B.D., Professor of Latin in the Queen's University;

Chaplain to his Excellency the Lord-Lieutenant of Ireland; and late Don*
nellan Lecturer in the University of Dublin. Crown 8vo. cloth, 7s. Gd,

ROBINSON.—Missions nrged upon the State, on Grounds
both of Duty and Policy. By C. K. ROBINSON, M.A. Fellow and Assistant

Tutor of St. Catherine's College. Fenp. 8vo. cloth, 3s.

ROWSELL.-THE ENGLISH UNIVERSITIES AND THE
ENGLISH POOR. Sermons Preached before the University of Cambridge.
By T. J. ROWSELL, M.A. Incumbent of St Peter’s, Stepney. Fcap. 8vo.

cloth limp, red leaves, 2s.

RUTH AND HER FRIENDS. A Story for Girls.
With a Frontispiece. Third Edition. Royal 16mo. extra cloth, gUtleaves, 5s.

SALLUST.—Sallust for Schools.
With English Notes. Second Edition. By CHARLES MERIVALE,
i». D.; late Fellow and Tutor of St. John’s College, Cambridge, 8rc., Author
of the "History of Rome,” &c. Fcap. 8vo. cloth, 4i. 6d.

"The Jugurtha” and ”TheCatu.ina’* hat be itao separately, price
BACn IN CLOTR.

SANDARS.-BY THE SEA, AND OTHER POEMS.
By EDMUND SANDARS, of Trinity Hall, Cambridge. Fcap. 8vo.

doth, 4s, €d.

SCOURING OF THE WHITE HORSE; or, The Long
Vacation Ramble of a London Clerk. By the Author of " Tom Brown’s
School Days.” Illustrated by Doyle. Sig;htli Thousand. Imp. 16mo.

doth, elegant, 8«. 6d,
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SELWYN.—The Work of Christ in the World.
Sermons preached before the University of Cambridge. By the Right Rev.
GEORGE AUGUSTUS SELWYN, D.D. Bishop of New Zealand, formerly

Fellow of St. John's College. Third Edition. Crown Svo. 2s.

SELWYN.—A Verbal Analysis of the Holy Bible.
Intended to facilitate the translation of the Holy Scriptures into Foreign

Languages. Compiled for the use of the Melanesian Mission. Small folio»

cloth, H*.

SIMPSON.—An Epitome of the History of the Christian
Church during the first Three Centuries and during the Reformation. With
Examination Papers. By WILLIAM SIMPSON, M.A. Third Mditioii.
Pep. 8vo. cloth. 5t.

SMITH.—City Poems.
By ALEXANDER SMITH, Author of ** A Life Drama, and other Poems.
Fcap. Svo. cloth. St.

SMITH.—Arithmetic and Algebra, in their Principles and
Application: with numerous systematically arranged Examples, taken from
the Cambridge Examination Papers. By BARNARD SMITH, M.A., Fellow
of St. Peter's College, Cambridge. Seventh ZIditlon. Crown 8vo.
cloth, lOi. 6d.

SMITH.—Arithmetic for the use of Schools.
New Edition. Crown Svo. cloth, is. 6d.

SMITH.—A Key to the Arithmetic for Schools.
Crown 8vo. cloth, 8,. 6d.

SNOWBALL.—The Elements of Plane and Spherical
Trigonometry. By J. C. SNOWBALL, M.A. Fellow of St.John'. College,

Cambridge. Ninth Edition. Crown Svo. cloth, 7,. 6d.

SNOWBALL.—Introduction to the Elements of Plane Trigo-
nometry for the use of Schools. Second Edition. Svo. sewed, it.

SNOWBALL.— The Cambridge Course of Elementary
Mechanics and Hydrostatics. Adapted for the use of Colleges and Schools.

With numerous Examples aud Problems. Fourth XSditlon. Crown Svo.

cloth, St.

SWAINSON.—A Handbook to Butler’s Analogy.
by C. A. SWAINSON, M.A. Principal of the Theological College, and
Prebendary of Chichester. Crown Svo. sewed, 2s.

SWAINSON.—The Creeds of the Church in their Relations
' to Holy Scripture and the Conscience of the Christian. Svu. cloth, 9s.

SWAINSON.—THE AUTHORITY OF THE NEW TESTA-
MENT; The Conviction of Righteousness, and other Lectures, delivered

before the University of Cambridge. Svo. cloth, \2s.

TAIT and STEELE.—A Treatise on Dynamics, with nume-
rou8 Examples, By P, G. TAIT, Fellow of St. Peter's College, Cambridge,

and Professorof Mathematics in Queen’s College, Belfast, and W. J.STEF.LE,
late Fellow of St. Peter's College. Crown Svo. cloth, lOi. 6d.

TAYLOR.— The Restoration of Belief.

By ISAAC TAYLOR, £sq., Author of “The Natural History of Enthu-
siasm." Crown Svo. cloth, 8s. M.

Digitized by Google



MACMILLAN & CO.’S PUBLICATIONS.lA

THEOLOGICAL Manuals.
CHXTRCH HISTORY: DURING THE MIDDLE AGES AND THE
REFORMATION (*.D. 9»0—1600). By ARCHDEACON HARDWICK.
With Pour Maps, 2 toIs. Crtrim «to. cloth, price lOs. 6d. each.

THE COMMON PRAYER; ITS HISTORY AND RATIONALE. By
FK ANCIS PROCTER. Fonrth Edition. Crown 8vo. cloth. 10«. 6d.

HISTORY OF THE CANON OF THE NEW TESTAMENT. By
B. F. WESTCOTT. Crown 8»o. cloth, 12s.

*•* Others are in progress, and will be announeed In due time.

THRING.—A Construing Book.
Compiled by the Rer. EDWARD THRINO, M.A. Bead Master of Up.
pingham Grammar School, late Fellow of Kin^i CoUega, Cambridge. Fcap.
8to. cloth, 2s. 6d.

THRING.—The Elements of Grammar taught in English.
Third ZSdltion« ISmo. bound in clothp2«.

THRING.—The Child’s Grammar.
Being the substance of the above, with Examples for Practice. Adapted for
Junior Classes. A New Edition. 18mo. limp cloth. Is.

THRING.—Sermons delivered at Uppingham School.
Crown 8yo. cloth, 5s.

THRING.- School Songs.
A Collection of Songs for Schools. With the Music arranged for four Voices*
Edited by EDWARD THRINO, M.Asp Head Matter of Uppingham Mbooi
and H. RICCIUS. Small folio, 7s. 6d.

THRUPP.—Antient Jerusalem : a New Investigation into the
History, Topography, and Plan of the City, Environs, and Temple, Designed
principally to illustrate the records and prophecies of Scripture. With Map
and Plans. By JOSEPH FRANCIS THRUPP, M.A. Vicar of Barrington,
Cambridge, late Fellow of Trinity College. 8vo. cloth, I5s.

THUCYDIDES, BOOK VI. With English Notes, and a Map.
By PERCIVAL FROST, Jun. M.A. late Fellow of St. John’s CoiUge,
Cambridge. 8ro. 7s. Bd.

TODHUNTER.—A Treatise on the Differential Calculus.
With numerous Examples. By I. TODHUNTER, M.A., Fellow and
Assistant Tutor of St. John’s College, Cambridge. TUrd EdUion.
Crown Svo. cloth, 10<. 6d.

TODHUNTER.—A Treatise on the Integral Calculus.
With numerous Examples. Crown 8vo. cloth, 10>. 6d.

TODHUNTER. — A Treatise on AnalyUcal Statics, witii
numerous Examples. Second Edition. Crown Svo. cloth, lOf. 6d.

TODHUNTER.—A Treatise on Conic Sections, with
numerous Examples. Second Edition. Crown Svo. cloth. 10s. 6<f.

TODHUNTER.—Algebra for the use of Colleges and Schools.
Crown Svo. cloth, 7s. 6i{. Second Edition.

TODHUNTER.— Plane Trigonometry for Colleges and
Schools. Crown Svo. cloth, St,

TODHUNTER.—A Treatise on Spherical Trigonometry for
the Use of Colleges and Schools. Crown Svo. cloth, 4s. sS.
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TODHUNTER.—Examples of Analytical Geometry of Three
Dimeniioni. Crown 8vo. cloth, 4«,

TOM BROWN’S SCHOOL DATS.
By AN OLD BOY. Bewenth Bdltlon. Fcap. Svo. cloth, it,

TRENCH.—Synonyms of the New Testament.
By The Very Rev. RICHARD CHENEVIX TRENCH, D.D. Dean of Weit-
miniter. Fourth Edition. Fcap. 8vo. cloth, is.

TRENCH.—Hnlsean Lectures for 1845—46.
CoNTiNTS. 1.—The Fitness of Holy Scripture for unfolding the Splrituel Life

of Men. S.—^ristthe Desire of ell Nations; or the Unconscious Pro*
pbeeies of Heathendom. Fourth Bdition. Foolscap 8vo. elothi 6s.

TRENCH.—Sermons Preached before the University of Cam-
bridge. Fcap. 8vo. cloth, 2s. 6d.

VAUGHAN.-Notes for Lectures on Confirmation. With
luitable Prayera. By C. J. VAUGHAN, D.D., Head Master of Harrow
School. Third Edition. Limp cloth, red edges. Is. 6d.

VAUGHAN.—St. Paul’s Epistle to the Romans.
The Greek Text, with English Notes. By C. J. VAUGHAN, D.D. 6to»
cloth, 7s. 6d.

VAUGHAN.-MEMORIALS OF HARROW SUNDAYS.
A Selection of Sermons preached in Harrow School Chapel. By C. J
VAUGHAN, D.D. With a View of the Interior of the Chapel. Crown 8vo.

cloth, red leaves, 10s. €d.

VAUGHAN.— Sermons preached in St. John’s Church,
Leicester, during the years I8SS and 1886. Ily DAVID J. VAUGHAN, M.A.
Fellow of Trinity College, Cambridge, and Incumbent ofjSt. Mark's, White-
chapel. Crown 8vo. cloth, it. id,

VAUGHAN.—Three Sermons on The Atonement. With a
Prefkde. By D. J. Vaughan, M.A. Limp cloth, red e.lgos, is. 6d.

WAGNER.-Memoir of the Rev. George Wagner, late of St.
Stephen’s, Brighton. ‘By J. N. 8IMPK1NSON, M.A. Rector of Brington,
Northampton. BSCOnd Bdttion. Crown 8vo. cloth, Os.

WATSON AND ROUTH.-CAMBRIDGE SENATE HOUSE
PROBLEMS AND RIDERS. For the Year I860. With Solutions by H.
W. WATSON, M.A. and E. J. ROUTH, M.A. Crown 8vo. cloth, 7s. 6d.

WESTCOTT.—History of the Canon of the New Testament
during the First Pour Centuries. By BROOKE FOSS WESTCOTT, M.A.,
Assistant Master of Harrow School

; late Fellow of Trinity College, Cam-
bridge. Crown 8vo. cloth, 12s. 6d.

*«* This forms part of the Serlea of Theelogiral Manuals.

WESTCOTT. — Characteristics of the Go^el Miracles.
Sermons preached before the University of Cambridge, with Note*. By
B. F. WESTCOTT, M.A., Author of “History of the New Testament
Canon.’’ Crown Svo. cloth, 4s. 6d.

WHEWELL.-THE PLATONIC DIALOGUES FOR
ENGLISH READERS. By W. WHEWELL, D D. Vol. L fcap. 8to.

cloth, 7s. 8d.
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WHITMORE.—Gilbert Marlowe and Other Poems.
With a Preface by the Author of “Tom Brown's Schooldays.'* Fcap. 8vo.
cloth, 3i. 6d.

WILSON.—The Five Gateways of Knowledge.
By GEORGE WILSON, M.U., F.R.S.E., Regius Professor of Technology in

the Unirersity of Edinburgh. Second Edition, Fcap. Svo. cloth, 2i. 6d.

or in Paper Covers, U.

WILSON.—The Progress of the Telegraph.
Fcap. 8vo. Is.

WILSON.—A Treatise on Dynamics.
By W. P. WILSON, M.A., Fellow of St. John's, Cambridge,and Professor of

Mathematicsin the University of Melbourne. 8vo. bds. 9s. 6d.

WOLFE.-ONE HUNDRED AND FIFTY ORIGINAL
PSALM AND HYMN TUNES. For Four Voices. By ARTHUR
WOLFF., M.A., Fellow and Tutor of Clare College, Cambridge. Oblong
royal 8vo. extra cloth, gilt leaves, lOr. 6d.

WORSHIP OF GOD AND FELLOWSHIP AMONG MEN.
A Series of Sermons on Public Worship. Fcap. Svo. cloth, Sr. 6d.

By F. D. Maurice, M.A. T. J. Rowseel, M.A. J. Ll. Davies, M.A.
and D. 3. Vavorak, M.A.

WRIGHT.-The Iliad of Homer.
Translated into English Verse by J. C. WRIGHT, M.A. Translator of Dante.
Crown Svo. Books l.^VI. 5«.

WRIGHT.—Hellenica
;

or, a History of Greece in Greek,
as related by Diodorus and Thucydides, being a First Greek Reading
Book, with Explanatory Notes, Critical and Historical. By J. WRIGHT,
M. A., of Trinity College, Cambridge, and Head-Master of Sutton Coldfield

Grammar School. Second Edition, with a Vocabueaxt. IZmo.
cloth. St. 6d,

WRIGHT.—David, King of Israel.
Readings for the Young. With Six lUustrationi after SCHNORR. Royal
Ifimo. extra cloth, gilt leaves, St.

WRIGHT.—A Help to Latin Grammar;
or, the Form and Use of Words in Latin. With Progressive Exercises.

Crown Svo. cloth, 4i. 6d.

.WRIGHT,—The Seven Kings of Rome

:

An easy Narrative, abridged from the First Book of Livy by the omission of

difllcult passages, being a First Latin Reading Book, with Grammatical
Notes. Fcap. Svo. cloth, St.

WRIGHT.—A Vocabulary and Exercises on the “ Seven
Kings of Rome." Fcap. Svo. cloth, 2s. 6d.

The Vocabulary and Exercises may also be had bound up with "The Seven
Kings of Rome." Price St. cloth.

ONE SHILLING, MONTHLY.MACM ILL-AN^S MAGAZINE.
EDITED BY DAVID MASSON.

* Volumes I., II., and III., are now ready, handsomely bound in cloth,

« price 7«. 6d. each.

K. CLAY, raXHTLE, BABAIX 8TBBET HILL.
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